Loading…
Nuclear sodium and potassium
Na + and K + influence gene expression 1–3 , and it is important to know the concentrations and chemical activities of these cations in the cell nucleus and to understand their control. However, measurements are hampered by the small size of nuclei, and also because (1) the steep Na + and K + activi...
Saved in:
Published in: | Nature (London) 1981-05, Vol.291 (5812), p.258-261 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-116701aacacd961996ef11c05c706f148288e7ca603c3c5a219331992ecb314f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-116701aacacd961996ef11c05c706f148288e7ca603c3c5a219331992ecb314f3 |
container_end_page | 261 |
container_issue | 5812 |
container_start_page | 258 |
container_title | Nature (London) |
container_volume | 291 |
creator | Paine, Philip L Pearson, Terry W Tluczek, Louis J. M Horowitz, Samuel B |
description | Na
+
and K
+
influence gene expression
1–3
, and it is important to know the concentrations and chemical activities of these cations in the cell nucleus and to understand their control. However, measurements are hampered by the small size of nuclei, and also because (1) the steep Na
+
and K
+
activity gradients across cell membranes can cause experimental manipulations to provoke rapid (∼0.1 s half-time for a 10 µm cell) artefactual cation redistributions; (2) intracellular activities cannot be directly inferred from concentrations because Na
+
, K
+
and water exist partly in bound form. We circumvent these difficulties by using a giant cell (amphibian oocyte), cryogenic methods to limit diffusion, and an artificial intracellular reference phase
4,5
. Century
et al.
6
found K
+
more concentrated in the oocyte nucleus than in cytoplasm, and the reverse for Na
+
. Our data for the
Desmognathus o. ochrophaeus
(salamander) oocyte are similar: the nucleus contains 30±3 µequiv Na
+
and 144±3µequiv K
+
per ml H
2
O; the cytoplasm contains 87±2 µequiv Na
+
and 87±2 µequiv K
+
per ml H
2
O (means±s.e.m.). These data could imply that the nucleus actively transports Na
+
and K
+
, but strong evidence suggests otherwise: the nuclear envelope, with pores of effective radius 45 Å (ref. 7), is too permeable to maintain small solute concentration gradients
8–10
, and microelectrodes measure equal nuclear and cytoplasmic cation activities
11–13
. Here, we confirm and extend these findings, showing that nucleus/cytoplasm cation concentration differences are due to (1) partial exclusion of diffusive Na
+
and K
+
by cytoplasm and (2) differential Na
+
and K
+
binding by nucleus and cytoplasm. |
doi_str_mv | 10.1038/291258a0 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75659045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75659045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-116701aacacd961996ef11c05c706f148288e7ca603c3c5a219331992ecb314f3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMotVbBH6DSlehi9N5k8lpK8QVFN7oOaSYjlXnUZLLw3xuZ2pWry-V8fHAOIacINwhM3VKNlCsLe2SKpRRFKZTcJ1MAqgpQTBySoxg_AYCjLCdkIrSkAGpKzl6Sa7wN89hX69TObVfNN_1gY8zfMTmobRP9yfbOyPvD_dviqVi-Pj4v7paFY4wPBaKQgNY66yotUGvha0QH3EkQNZaKKuWlswKYY45bipqxjFHvVgzLms3I5ejdhP4r-TiYdh2dbxrb-T5FI7ngGkqewasRdKGPMfjabMK6teHbIJjfIczfEBk93zrTqvXVDtw2z_n1mMecdB8-mM8-hS7X_M91MbKdHVLwO9cO-AH0Mmya</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75659045</pqid></control><display><type>article</type><title>Nuclear sodium and potassium</title><source>Nature_系列刊</source><creator>Paine, Philip L ; Pearson, Terry W ; Tluczek, Louis J. M ; Horowitz, Samuel B</creator><creatorcontrib>Paine, Philip L ; Pearson, Terry W ; Tluczek, Louis J. M ; Horowitz, Samuel B</creatorcontrib><description>Na
+
and K
+
influence gene expression
1–3
, and it is important to know the concentrations and chemical activities of these cations in the cell nucleus and to understand their control. However, measurements are hampered by the small size of nuclei, and also because (1) the steep Na
+
and K
+
activity gradients across cell membranes can cause experimental manipulations to provoke rapid (∼0.1 s half-time for a 10 µm cell) artefactual cation redistributions; (2) intracellular activities cannot be directly inferred from concentrations because Na
+
, K
+
and water exist partly in bound form. We circumvent these difficulties by using a giant cell (amphibian oocyte), cryogenic methods to limit diffusion, and an artificial intracellular reference phase
4,5
. Century
et al.
6
found K
+
more concentrated in the oocyte nucleus than in cytoplasm, and the reverse for Na
+
. Our data for the
Desmognathus o. ochrophaeus
(salamander) oocyte are similar: the nucleus contains 30±3 µequiv Na
+
and 144±3µequiv K
+
per ml H
2
O; the cytoplasm contains 87±2 µequiv Na
+
and 87±2 µequiv K
+
per ml H
2
O (means±s.e.m.). These data could imply that the nucleus actively transports Na
+
and K
+
, but strong evidence suggests otherwise: the nuclear envelope, with pores of effective radius 45 Å (ref. 7), is too permeable to maintain small solute concentration gradients
8–10
, and microelectrodes measure equal nuclear and cytoplasmic cation activities
11–13
. Here, we confirm and extend these findings, showing that nucleus/cytoplasm cation concentration differences are due to (1) partial exclusion of diffusive Na
+
and K
+
by cytoplasm and (2) differential Na
+
and K
+
binding by nucleus and cytoplasm.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/291258a0</identifier><identifier>PMID: 6972008</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Biological Transport, Active ; Cell Nucleus - metabolism ; Cytoplasm - metabolism ; Female ; Humanities and Social Sciences ; letter ; multidisciplinary ; Nuclear Envelope - metabolism ; Oocytes - metabolism ; Potassium - metabolism ; Rana pipiens ; Science ; Science (multidisciplinary) ; Sodium - metabolism ; Urodela</subject><ispartof>Nature (London), 1981-05, Vol.291 (5812), p.258-261</ispartof><rights>Springer Nature Limited 1981</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-116701aacacd961996ef11c05c706f148288e7ca603c3c5a219331992ecb314f3</citedby><cites>FETCH-LOGICAL-c335t-116701aacacd961996ef11c05c706f148288e7ca603c3c5a219331992ecb314f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6972008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paine, Philip L</creatorcontrib><creatorcontrib>Pearson, Terry W</creatorcontrib><creatorcontrib>Tluczek, Louis J. M</creatorcontrib><creatorcontrib>Horowitz, Samuel B</creatorcontrib><title>Nuclear sodium and potassium</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Na
+
and K
+
influence gene expression
1–3
, and it is important to know the concentrations and chemical activities of these cations in the cell nucleus and to understand their control. However, measurements are hampered by the small size of nuclei, and also because (1) the steep Na
+
and K
+
activity gradients across cell membranes can cause experimental manipulations to provoke rapid (∼0.1 s half-time for a 10 µm cell) artefactual cation redistributions; (2) intracellular activities cannot be directly inferred from concentrations because Na
+
, K
+
and water exist partly in bound form. We circumvent these difficulties by using a giant cell (amphibian oocyte), cryogenic methods to limit diffusion, and an artificial intracellular reference phase
4,5
. Century
et al.
6
found K
+
more concentrated in the oocyte nucleus than in cytoplasm, and the reverse for Na
+
. Our data for the
Desmognathus o. ochrophaeus
(salamander) oocyte are similar: the nucleus contains 30±3 µequiv Na
+
and 144±3µequiv K
+
per ml H
2
O; the cytoplasm contains 87±2 µequiv Na
+
and 87±2 µequiv K
+
per ml H
2
O (means±s.e.m.). These data could imply that the nucleus actively transports Na
+
and K
+
, but strong evidence suggests otherwise: the nuclear envelope, with pores of effective radius 45 Å (ref. 7), is too permeable to maintain small solute concentration gradients
8–10
, and microelectrodes measure equal nuclear and cytoplasmic cation activities
11–13
. Here, we confirm and extend these findings, showing that nucleus/cytoplasm cation concentration differences are due to (1) partial exclusion of diffusive Na
+
and K
+
by cytoplasm and (2) differential Na
+
and K
+
binding by nucleus and cytoplasm.</description><subject>Animals</subject><subject>Biological Transport, Active</subject><subject>Cell Nucleus - metabolism</subject><subject>Cytoplasm - metabolism</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>Nuclear Envelope - metabolism</subject><subject>Oocytes - metabolism</subject><subject>Potassium - metabolism</subject><subject>Rana pipiens</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sodium - metabolism</subject><subject>Urodela</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhYMotVbBH6DSlehi9N5k8lpK8QVFN7oOaSYjlXnUZLLw3xuZ2pWry-V8fHAOIacINwhM3VKNlCsLe2SKpRRFKZTcJ1MAqgpQTBySoxg_AYCjLCdkIrSkAGpKzl6Sa7wN89hX69TObVfNN_1gY8zfMTmobRP9yfbOyPvD_dviqVi-Pj4v7paFY4wPBaKQgNY66yotUGvha0QH3EkQNZaKKuWlswKYY45bipqxjFHvVgzLms3I5ejdhP4r-TiYdh2dbxrb-T5FI7ngGkqewasRdKGPMfjabMK6teHbIJjfIczfEBk93zrTqvXVDtw2z_n1mMecdB8-mM8-hS7X_M91MbKdHVLwO9cO-AH0Mmya</recordid><startdate>19810521</startdate><enddate>19810521</enddate><creator>Paine, Philip L</creator><creator>Pearson, Terry W</creator><creator>Tluczek, Louis J. M</creator><creator>Horowitz, Samuel B</creator><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19810521</creationdate><title>Nuclear sodium and potassium</title><author>Paine, Philip L ; Pearson, Terry W ; Tluczek, Louis J. M ; Horowitz, Samuel B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-116701aacacd961996ef11c05c706f148288e7ca603c3c5a219331992ecb314f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>Animals</topic><topic>Biological Transport, Active</topic><topic>Cell Nucleus - metabolism</topic><topic>Cytoplasm - metabolism</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>Nuclear Envelope - metabolism</topic><topic>Oocytes - metabolism</topic><topic>Potassium - metabolism</topic><topic>Rana pipiens</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sodium - metabolism</topic><topic>Urodela</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paine, Philip L</creatorcontrib><creatorcontrib>Pearson, Terry W</creatorcontrib><creatorcontrib>Tluczek, Louis J. M</creatorcontrib><creatorcontrib>Horowitz, Samuel B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paine, Philip L</au><au>Pearson, Terry W</au><au>Tluczek, Louis J. M</au><au>Horowitz, Samuel B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear sodium and potassium</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>1981-05-21</date><risdate>1981</risdate><volume>291</volume><issue>5812</issue><spage>258</spage><epage>261</epage><pages>258-261</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Na
+
and K
+
influence gene expression
1–3
, and it is important to know the concentrations and chemical activities of these cations in the cell nucleus and to understand their control. However, measurements are hampered by the small size of nuclei, and also because (1) the steep Na
+
and K
+
activity gradients across cell membranes can cause experimental manipulations to provoke rapid (∼0.1 s half-time for a 10 µm cell) artefactual cation redistributions; (2) intracellular activities cannot be directly inferred from concentrations because Na
+
, K
+
and water exist partly in bound form. We circumvent these difficulties by using a giant cell (amphibian oocyte), cryogenic methods to limit diffusion, and an artificial intracellular reference phase
4,5
. Century
et al.
6
found K
+
more concentrated in the oocyte nucleus than in cytoplasm, and the reverse for Na
+
. Our data for the
Desmognathus o. ochrophaeus
(salamander) oocyte are similar: the nucleus contains 30±3 µequiv Na
+
and 144±3µequiv K
+
per ml H
2
O; the cytoplasm contains 87±2 µequiv Na
+
and 87±2 µequiv K
+
per ml H
2
O (means±s.e.m.). These data could imply that the nucleus actively transports Na
+
and K
+
, but strong evidence suggests otherwise: the nuclear envelope, with pores of effective radius 45 Å (ref. 7), is too permeable to maintain small solute concentration gradients
8–10
, and microelectrodes measure equal nuclear and cytoplasmic cation activities
11–13
. Here, we confirm and extend these findings, showing that nucleus/cytoplasm cation concentration differences are due to (1) partial exclusion of diffusive Na
+
and K
+
by cytoplasm and (2) differential Na
+
and K
+
binding by nucleus and cytoplasm.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>6972008</pmid><doi>10.1038/291258a0</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 1981-05, Vol.291 (5812), p.258-261 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_75659045 |
source | Nature_系列刊 |
subjects | Animals Biological Transport, Active Cell Nucleus - metabolism Cytoplasm - metabolism Female Humanities and Social Sciences letter multidisciplinary Nuclear Envelope - metabolism Oocytes - metabolism Potassium - metabolism Rana pipiens Science Science (multidisciplinary) Sodium - metabolism Urodela |
title | Nuclear sodium and potassium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20sodium%20and%20potassium&rft.jtitle=Nature%20(London)&rft.au=Paine,%20Philip%20L&rft.date=1981-05-21&rft.volume=291&rft.issue=5812&rft.spage=258&rft.epage=261&rft.pages=258-261&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/291258a0&rft_dat=%3Cproquest_cross%3E75659045%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-116701aacacd961996ef11c05c706f148288e7ca603c3c5a219331992ecb314f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=75659045&rft_id=info:pmid/6972008&rfr_iscdi=true |