Loading…

Nuclear sodium and potassium

Na + and K + influence gene expression 1–3 , and it is important to know the concentrations and chemical activities of these cations in the cell nucleus and to understand their control. However, measurements are hampered by the small size of nuclei, and also because (1) the steep Na + and K + activi...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 1981-05, Vol.291 (5812), p.258-261
Main Authors: Paine, Philip L, Pearson, Terry W, Tluczek, Louis J. M, Horowitz, Samuel B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-116701aacacd961996ef11c05c706f148288e7ca603c3c5a219331992ecb314f3
cites cdi_FETCH-LOGICAL-c335t-116701aacacd961996ef11c05c706f148288e7ca603c3c5a219331992ecb314f3
container_end_page 261
container_issue 5812
container_start_page 258
container_title Nature (London)
container_volume 291
creator Paine, Philip L
Pearson, Terry W
Tluczek, Louis J. M
Horowitz, Samuel B
description Na + and K + influence gene expression 1–3 , and it is important to know the concentrations and chemical activities of these cations in the cell nucleus and to understand their control. However, measurements are hampered by the small size of nuclei, and also because (1) the steep Na + and K + activity gradients across cell membranes can cause experimental manipulations to provoke rapid (∼0.1 s half-time for a 10 µm cell) artefactual cation redistributions; (2) intracellular activities cannot be directly inferred from concentrations because Na + , K + and water exist partly in bound form. We circumvent these difficulties by using a giant cell (amphibian oocyte), cryogenic methods to limit diffusion, and an artificial intracellular reference phase 4,5 . Century et al. 6 found K + more concentrated in the oocyte nucleus than in cytoplasm, and the reverse for Na + . Our data for the Desmognathus o. ochrophaeus (salamander) oocyte are similar: the nucleus contains 30±3 µequiv Na + and 144±3µequiv K + per ml H 2 O; the cytoplasm contains 87±2 µequiv Na + and 87±2 µequiv K + per ml H 2 O (means±s.e.m.). These data could imply that the nucleus actively transports Na + and K + , but strong evidence suggests otherwise: the nuclear envelope, with pores of effective radius 45 Å (ref. 7), is too permeable to maintain small solute concentration gradients 8–10 , and microelectrodes measure equal nuclear and cytoplasmic cation activities 11–13 . Here, we confirm and extend these findings, showing that nucleus/cytoplasm cation concentration differences are due to (1) partial exclusion of diffusive Na + and K + by cytoplasm and (2) differential Na + and K + binding by nucleus and cytoplasm.
doi_str_mv 10.1038/291258a0
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75659045</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75659045</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-116701aacacd961996ef11c05c706f148288e7ca603c3c5a219331992ecb314f3</originalsourceid><addsrcrecordid>eNptkEtLAzEUhYMotVbBH6DSlehi9N5k8lpK8QVFN7oOaSYjlXnUZLLw3xuZ2pWry-V8fHAOIacINwhM3VKNlCsLe2SKpRRFKZTcJ1MAqgpQTBySoxg_AYCjLCdkIrSkAGpKzl6Sa7wN89hX69TObVfNN_1gY8zfMTmobRP9yfbOyPvD_dviqVi-Pj4v7paFY4wPBaKQgNY66yotUGvha0QH3EkQNZaKKuWlswKYY45bipqxjFHvVgzLms3I5ejdhP4r-TiYdh2dbxrb-T5FI7ngGkqewasRdKGPMfjabMK6teHbIJjfIczfEBk93zrTqvXVDtw2z_n1mMecdB8-mM8-hS7X_M91MbKdHVLwO9cO-AH0Mmya</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>75659045</pqid></control><display><type>article</type><title>Nuclear sodium and potassium</title><source>Nature_系列刊</source><creator>Paine, Philip L ; Pearson, Terry W ; Tluczek, Louis J. M ; Horowitz, Samuel B</creator><creatorcontrib>Paine, Philip L ; Pearson, Terry W ; Tluczek, Louis J. M ; Horowitz, Samuel B</creatorcontrib><description>Na + and K + influence gene expression 1–3 , and it is important to know the concentrations and chemical activities of these cations in the cell nucleus and to understand their control. However, measurements are hampered by the small size of nuclei, and also because (1) the steep Na + and K + activity gradients across cell membranes can cause experimental manipulations to provoke rapid (∼0.1 s half-time for a 10 µm cell) artefactual cation redistributions; (2) intracellular activities cannot be directly inferred from concentrations because Na + , K + and water exist partly in bound form. We circumvent these difficulties by using a giant cell (amphibian oocyte), cryogenic methods to limit diffusion, and an artificial intracellular reference phase 4,5 . Century et al. 6 found K + more concentrated in the oocyte nucleus than in cytoplasm, and the reverse for Na + . Our data for the Desmognathus o. ochrophaeus (salamander) oocyte are similar: the nucleus contains 30±3 µequiv Na + and 144±3µequiv K + per ml H 2 O; the cytoplasm contains 87±2 µequiv Na + and 87±2 µequiv K + per ml H 2 O (means±s.e.m.). These data could imply that the nucleus actively transports Na + and K + , but strong evidence suggests otherwise: the nuclear envelope, with pores of effective radius 45 Å (ref. 7), is too permeable to maintain small solute concentration gradients 8–10 , and microelectrodes measure equal nuclear and cytoplasmic cation activities 11–13 . Here, we confirm and extend these findings, showing that nucleus/cytoplasm cation concentration differences are due to (1) partial exclusion of diffusive Na + and K + by cytoplasm and (2) differential Na + and K + binding by nucleus and cytoplasm.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/291258a0</identifier><identifier>PMID: 6972008</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Biological Transport, Active ; Cell Nucleus - metabolism ; Cytoplasm - metabolism ; Female ; Humanities and Social Sciences ; letter ; multidisciplinary ; Nuclear Envelope - metabolism ; Oocytes - metabolism ; Potassium - metabolism ; Rana pipiens ; Science ; Science (multidisciplinary) ; Sodium - metabolism ; Urodela</subject><ispartof>Nature (London), 1981-05, Vol.291 (5812), p.258-261</ispartof><rights>Springer Nature Limited 1981</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-116701aacacd961996ef11c05c706f148288e7ca603c3c5a219331992ecb314f3</citedby><cites>FETCH-LOGICAL-c335t-116701aacacd961996ef11c05c706f148288e7ca603c3c5a219331992ecb314f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/6972008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paine, Philip L</creatorcontrib><creatorcontrib>Pearson, Terry W</creatorcontrib><creatorcontrib>Tluczek, Louis J. M</creatorcontrib><creatorcontrib>Horowitz, Samuel B</creatorcontrib><title>Nuclear sodium and potassium</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Na + and K + influence gene expression 1–3 , and it is important to know the concentrations and chemical activities of these cations in the cell nucleus and to understand their control. However, measurements are hampered by the small size of nuclei, and also because (1) the steep Na + and K + activity gradients across cell membranes can cause experimental manipulations to provoke rapid (∼0.1 s half-time for a 10 µm cell) artefactual cation redistributions; (2) intracellular activities cannot be directly inferred from concentrations because Na + , K + and water exist partly in bound form. We circumvent these difficulties by using a giant cell (amphibian oocyte), cryogenic methods to limit diffusion, and an artificial intracellular reference phase 4,5 . Century et al. 6 found K + more concentrated in the oocyte nucleus than in cytoplasm, and the reverse for Na + . Our data for the Desmognathus o. ochrophaeus (salamander) oocyte are similar: the nucleus contains 30±3 µequiv Na + and 144±3µequiv K + per ml H 2 O; the cytoplasm contains 87±2 µequiv Na + and 87±2 µequiv K + per ml H 2 O (means±s.e.m.). These data could imply that the nucleus actively transports Na + and K + , but strong evidence suggests otherwise: the nuclear envelope, with pores of effective radius 45 Å (ref. 7), is too permeable to maintain small solute concentration gradients 8–10 , and microelectrodes measure equal nuclear and cytoplasmic cation activities 11–13 . Here, we confirm and extend these findings, showing that nucleus/cytoplasm cation concentration differences are due to (1) partial exclusion of diffusive Na + and K + by cytoplasm and (2) differential Na + and K + binding by nucleus and cytoplasm.</description><subject>Animals</subject><subject>Biological Transport, Active</subject><subject>Cell Nucleus - metabolism</subject><subject>Cytoplasm - metabolism</subject><subject>Female</subject><subject>Humanities and Social Sciences</subject><subject>letter</subject><subject>multidisciplinary</subject><subject>Nuclear Envelope - metabolism</subject><subject>Oocytes - metabolism</subject><subject>Potassium - metabolism</subject><subject>Rana pipiens</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sodium - metabolism</subject><subject>Urodela</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1981</creationdate><recordtype>article</recordtype><recordid>eNptkEtLAzEUhYMotVbBH6DSlehi9N5k8lpK8QVFN7oOaSYjlXnUZLLw3xuZ2pWry-V8fHAOIacINwhM3VKNlCsLe2SKpRRFKZTcJ1MAqgpQTBySoxg_AYCjLCdkIrSkAGpKzl6Sa7wN89hX69TObVfNN_1gY8zfMTmobRP9yfbOyPvD_dviqVi-Pj4v7paFY4wPBaKQgNY66yotUGvha0QH3EkQNZaKKuWlswKYY45bipqxjFHvVgzLms3I5ejdhP4r-TiYdh2dbxrb-T5FI7ngGkqewasRdKGPMfjabMK6teHbIJjfIczfEBk93zrTqvXVDtw2z_n1mMecdB8-mM8-hS7X_M91MbKdHVLwO9cO-AH0Mmya</recordid><startdate>19810521</startdate><enddate>19810521</enddate><creator>Paine, Philip L</creator><creator>Pearson, Terry W</creator><creator>Tluczek, Louis J. M</creator><creator>Horowitz, Samuel B</creator><general>Nature Publishing Group UK</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19810521</creationdate><title>Nuclear sodium and potassium</title><author>Paine, Philip L ; Pearson, Terry W ; Tluczek, Louis J. M ; Horowitz, Samuel B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-116701aacacd961996ef11c05c706f148288e7ca603c3c5a219331992ecb314f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1981</creationdate><topic>Animals</topic><topic>Biological Transport, Active</topic><topic>Cell Nucleus - metabolism</topic><topic>Cytoplasm - metabolism</topic><topic>Female</topic><topic>Humanities and Social Sciences</topic><topic>letter</topic><topic>multidisciplinary</topic><topic>Nuclear Envelope - metabolism</topic><topic>Oocytes - metabolism</topic><topic>Potassium - metabolism</topic><topic>Rana pipiens</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sodium - metabolism</topic><topic>Urodela</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paine, Philip L</creatorcontrib><creatorcontrib>Pearson, Terry W</creatorcontrib><creatorcontrib>Tluczek, Louis J. M</creatorcontrib><creatorcontrib>Horowitz, Samuel B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paine, Philip L</au><au>Pearson, Terry W</au><au>Tluczek, Louis J. M</au><au>Horowitz, Samuel B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nuclear sodium and potassium</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>1981-05-21</date><risdate>1981</risdate><volume>291</volume><issue>5812</issue><spage>258</spage><epage>261</epage><pages>258-261</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Na + and K + influence gene expression 1–3 , and it is important to know the concentrations and chemical activities of these cations in the cell nucleus and to understand their control. However, measurements are hampered by the small size of nuclei, and also because (1) the steep Na + and K + activity gradients across cell membranes can cause experimental manipulations to provoke rapid (∼0.1 s half-time for a 10 µm cell) artefactual cation redistributions; (2) intracellular activities cannot be directly inferred from concentrations because Na + , K + and water exist partly in bound form. We circumvent these difficulties by using a giant cell (amphibian oocyte), cryogenic methods to limit diffusion, and an artificial intracellular reference phase 4,5 . Century et al. 6 found K + more concentrated in the oocyte nucleus than in cytoplasm, and the reverse for Na + . Our data for the Desmognathus o. ochrophaeus (salamander) oocyte are similar: the nucleus contains 30±3 µequiv Na + and 144±3µequiv K + per ml H 2 O; the cytoplasm contains 87±2 µequiv Na + and 87±2 µequiv K + per ml H 2 O (means±s.e.m.). These data could imply that the nucleus actively transports Na + and K + , but strong evidence suggests otherwise: the nuclear envelope, with pores of effective radius 45 Å (ref. 7), is too permeable to maintain small solute concentration gradients 8–10 , and microelectrodes measure equal nuclear and cytoplasmic cation activities 11–13 . Here, we confirm and extend these findings, showing that nucleus/cytoplasm cation concentration differences are due to (1) partial exclusion of diffusive Na + and K + by cytoplasm and (2) differential Na + and K + binding by nucleus and cytoplasm.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>6972008</pmid><doi>10.1038/291258a0</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 1981-05, Vol.291 (5812), p.258-261
issn 0028-0836
1476-4687
language eng
recordid cdi_proquest_miscellaneous_75659045
source Nature_系列刊
subjects Animals
Biological Transport, Active
Cell Nucleus - metabolism
Cytoplasm - metabolism
Female
Humanities and Social Sciences
letter
multidisciplinary
Nuclear Envelope - metabolism
Oocytes - metabolism
Potassium - metabolism
Rana pipiens
Science
Science (multidisciplinary)
Sodium - metabolism
Urodela
title Nuclear sodium and potassium
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A21%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nuclear%20sodium%20and%20potassium&rft.jtitle=Nature%20(London)&rft.au=Paine,%20Philip%20L&rft.date=1981-05-21&rft.volume=291&rft.issue=5812&rft.spage=258&rft.epage=261&rft.pages=258-261&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/291258a0&rft_dat=%3Cproquest_cross%3E75659045%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-116701aacacd961996ef11c05c706f148288e7ca603c3c5a219331992ecb314f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=75659045&rft_id=info:pmid/6972008&rfr_iscdi=true