Loading…
Numerical technique for solving the radiative transfer equation for a spherical shell atmosphere
A method for numerically solving the equation of radiative transfer in a spherical shell atmosphere is presented. The method uses a conical boundary and a Gauss-Seidel iteration scheme to solve for all orders of scattering along a single radial line in the atmosphere. Tests of the model indicate an...
Saved in:
Published in: | Applied optics (2004) 1994-03, Vol.33 (9), p.1760-1770 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A method for numerically solving the equation of radiative transfer in a spherical shell atmosphere is presented. The method uses a conical boundary and a Gauss-Seidel iteration scheme to solve for all orders of scattering along a single radial line in the atmosphere. Tests of the model indicate an accuracy better than 1% for most Earth-atmosphere situations. Results from this model are compared with flat-atmosphere model results for a scattering-only atmosphere. These comparisons indicate that excluding spherical effects for solar zenith angles greater than 85° leads to errors larger than 5% at optical depths as small as 0.10. |
---|---|
ISSN: | 1559-128X |
DOI: | 10.1364/ao.33.001760 |