Loading…

Interaction of tubulin with phospholipid vesicles. II. Physical changes of the protein

We have shown that soluble tubulin will bind to small unilamellar vesicles of dipalmitoyl phosphatidylcholine (Klausner, R. D., Kumar, N., Weinstein, J. N., Blumenthal, R., and Flavin, M. (1981) J. Biol. Chem. 256, 5879-5885). This association uniquely occurs at the lipid phase transition. The tubul...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1981-06, Vol.256 (11), p.5886-5889
Main Authors: Kumar, N, Klausner, R D, Weinstein, J N, Blumenthal, R, Flavin, M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have shown that soluble tubulin will bind to small unilamellar vesicles of dipalmitoyl phosphatidylcholine (Klausner, R. D., Kumar, N., Weinstein, J. N., Blumenthal, R., and Flavin, M. (1981) J. Biol. Chem. 256, 5879-5885). This association uniquely occurs at the lipid phase transition. The tubulin, when bound to the vesicles, displays an altered tryptophan fluorescence characterized by a 5-nm blue shift in the emission maximum and a 22% decrease in fluorescence intensity, when compared to soluble tubulin. Tryptophans in vesicle-bound tubulin are less accessible to the aqueous collisional quenchers, acrylamide and iodide, than in soluble tubulin. Circular dichroism studies reveal an increase in alpha-helical content of tubulin as a result of vesicle interaction. Proteolytic digestion by trypsin of vesicle bound tubulin is slower than of soluble tubulin. The beta subunit of tubulin is preferentially protected from trypsin by vesicle interaction. Furthermore, the pattern of tryptic cleavage products is altered by this interaction.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)69291-4