Loading…

Kinetics of Escherichia coli helicase II-catalyzed unwinding of fully duplex and nicked circular DNA

Escherichia coli helicase II (UvrD) protein can initiate unwinding of duplex DNA at blunt ends or nicks, although these reactions require excess protein. We have undertaken kinetic studies of these reactions in order to probe the mechanism of initiation of unwinding. DNA unwinding was monitored dire...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1993-04, Vol.32 (15), p.4128-4138
Main Authors: Runyon, Gregory T, Lohman, Timothy M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a414t-c406018a5d679df087442a083e4db44a06cf2f28b7c4a1755258d125011be2c43
cites
container_end_page 4138
container_issue 15
container_start_page 4128
container_title Biochemistry (Easton)
container_volume 32
creator Runyon, Gregory T
Lohman, Timothy M
description Escherichia coli helicase II (UvrD) protein can initiate unwinding of duplex DNA at blunt ends or nicks, although these reactions require excess protein. We have undertaken kinetic studies of these reactions in order to probe the mechanism of initiation of unwinding. DNA unwinding was monitored directly by using agarose gel electrophoresis and indirectly through the rate of ATP hydrolysis by helicase II in the presence of an ATP-regenerating system. In the presence of fully duplex DNA and excess helicase II, the rate of ATP hydrolysis displays a distinct lag phase before the final steady-state rate of hydrolysis is reached. This reflects the fact that ATP hydrolysis under these conditions results from helicase II binding to the ssDNA products of the unwinding reaction, rather than from an intrinsic duplex DNA-dependent ATPase activity. Unwinding of short blunt-ended duplex DNA (341 and 849 base pairs) occurs in an "all-or-none" reaction, indicating that initiation of unwinding by helicase II is rate-limiting. We propose a minimal mechanism for the initiation of DNA unwinding by helicase II which includes a binding step followed by the rate-limiting formation of an initiation complex, possibly involving protein dimerization, and we have determined the phenomenological kinetic parameters describing this mechanism. Unwinding of a series of DNA substrates containing different initiation sites (e.g., blunt ends, internal nicks, and four-nucleotide 3' vs 5' ssDNA flanking regions) indicates that the rate of initiation is slowest at nicks and, surprisingly, at ends possessing a four-nucleotide 3' ssDNA flanking region.
doi_str_mv 10.1021/bi00066a039
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75677109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16775872</sourcerecordid><originalsourceid>FETCH-LOGICAL-a414t-c406018a5d679df087442a083e4db44a06cf2f28b7c4a1755258d125011be2c43</originalsourceid><addsrcrecordid>eNqF0EtvEzEUBWALgUoorFgjeYFggQauHT9mllUfEFoVpJa1dcf2ELeOJ7VnRMOvZ6JEEQskVpZ9Pl9dHUJeM_jIgLNPbQAApRDmzRMyY5JDJZpGPiWz7XvFGwXPyYtS7qarAC2OyFEtNFMcZsRdhuSHYAvtO3pe7NLnYJcBqe1joEsfg8Xi6WJRWRwwbn57R8f0KyQX0s_tn26McUPduI7-kWJyNAV7PyEbsh0jZnp2ffKSPOswFv9qfx6THxfnt6dfqqtvnxenJ1cVCiaGygpQwGqUTunGdVBrIThCPffCtUIgKNvxjtettgKZlpLL2jEugbHWcyvmx-Tdbu469w-jL4NZhWJ9jJh8PxajpdKaQfNfyCYna80n-GEHbe5Lyb4z6xxWmDeGgdmWb_4qf9Jv9mPHduXdwe7bnvK3-xyLxdhlTDaUAxNaN7zZjql2LJTBPx5izPdG6bmW5vb7jbm4-Srhkl-bs8m_33m0xdz1Y05Tyf9c8A8j7KXe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16775872</pqid></control><display><type>article</type><title>Kinetics of Escherichia coli helicase II-catalyzed unwinding of fully duplex and nicked circular DNA</title><source>ACS CRKN Legacy Archives</source><creator>Runyon, Gregory T ; Lohman, Timothy M</creator><creatorcontrib>Runyon, Gregory T ; Lohman, Timothy M</creatorcontrib><description>Escherichia coli helicase II (UvrD) protein can initiate unwinding of duplex DNA at blunt ends or nicks, although these reactions require excess protein. We have undertaken kinetic studies of these reactions in order to probe the mechanism of initiation of unwinding. DNA unwinding was monitored directly by using agarose gel electrophoresis and indirectly through the rate of ATP hydrolysis by helicase II in the presence of an ATP-regenerating system. In the presence of fully duplex DNA and excess helicase II, the rate of ATP hydrolysis displays a distinct lag phase before the final steady-state rate of hydrolysis is reached. This reflects the fact that ATP hydrolysis under these conditions results from helicase II binding to the ssDNA products of the unwinding reaction, rather than from an intrinsic duplex DNA-dependent ATPase activity. Unwinding of short blunt-ended duplex DNA (341 and 849 base pairs) occurs in an "all-or-none" reaction, indicating that initiation of unwinding by helicase II is rate-limiting. We propose a minimal mechanism for the initiation of DNA unwinding by helicase II which includes a binding step followed by the rate-limiting formation of an initiation complex, possibly involving protein dimerization, and we have determined the phenomenological kinetic parameters describing this mechanism. Unwinding of a series of DNA substrates containing different initiation sites (e.g., blunt ends, internal nicks, and four-nucleotide 3' vs 5' ssDNA flanking regions) indicates that the rate of initiation is slowest at nicks and, surprisingly, at ends possessing a four-nucleotide 3' ssDNA flanking region.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi00066a039</identifier><identifier>PMID: 8471620</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Adenosine Triphosphatases - metabolism ; Analytical, structural and metabolic biochemistry ; Biological and medical sciences ; DNA - metabolism ; DNA Helicases ; DNA, Circular - metabolism ; Electrophoresis, Agar Gel ; Enzymes and enzyme inhibitors ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli Proteins ; Fundamental and applied biological sciences. Psychology ; Isomerases ; Kinetics ; Mathematics ; Models, Biological ; Substrate Specificity</subject><ispartof>Biochemistry (Easton), 1993-04, Vol.32 (15), p.4128-4138</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a414t-c406018a5d679df087442a083e4db44a06cf2f28b7c4a1755258d125011be2c43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/bi00066a039$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/bi00066a039$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27064,27924,27925,56766,56816</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4779299$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8471620$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Runyon, Gregory T</creatorcontrib><creatorcontrib>Lohman, Timothy M</creatorcontrib><title>Kinetics of Escherichia coli helicase II-catalyzed unwinding of fully duplex and nicked circular DNA</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Escherichia coli helicase II (UvrD) protein can initiate unwinding of duplex DNA at blunt ends or nicks, although these reactions require excess protein. We have undertaken kinetic studies of these reactions in order to probe the mechanism of initiation of unwinding. DNA unwinding was monitored directly by using agarose gel electrophoresis and indirectly through the rate of ATP hydrolysis by helicase II in the presence of an ATP-regenerating system. In the presence of fully duplex DNA and excess helicase II, the rate of ATP hydrolysis displays a distinct lag phase before the final steady-state rate of hydrolysis is reached. This reflects the fact that ATP hydrolysis under these conditions results from helicase II binding to the ssDNA products of the unwinding reaction, rather than from an intrinsic duplex DNA-dependent ATPase activity. Unwinding of short blunt-ended duplex DNA (341 and 849 base pairs) occurs in an "all-or-none" reaction, indicating that initiation of unwinding by helicase II is rate-limiting. We propose a minimal mechanism for the initiation of DNA unwinding by helicase II which includes a binding step followed by the rate-limiting formation of an initiation complex, possibly involving protein dimerization, and we have determined the phenomenological kinetic parameters describing this mechanism. Unwinding of a series of DNA substrates containing different initiation sites (e.g., blunt ends, internal nicks, and four-nucleotide 3' vs 5' ssDNA flanking regions) indicates that the rate of initiation is slowest at nicks and, surprisingly, at ends possessing a four-nucleotide 3' ssDNA flanking region.</description><subject>Adenosine Triphosphatases - metabolism</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>Biological and medical sciences</subject><subject>DNA - metabolism</subject><subject>DNA Helicases</subject><subject>DNA, Circular - metabolism</subject><subject>Electrophoresis, Agar Gel</subject><subject>Enzymes and enzyme inhibitors</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli Proteins</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Isomerases</subject><subject>Kinetics</subject><subject>Mathematics</subject><subject>Models, Biological</subject><subject>Substrate Specificity</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqF0EtvEzEUBWALgUoorFgjeYFggQauHT9mllUfEFoVpJa1dcf2ELeOJ7VnRMOvZ6JEEQskVpZ9Pl9dHUJeM_jIgLNPbQAApRDmzRMyY5JDJZpGPiWz7XvFGwXPyYtS7qarAC2OyFEtNFMcZsRdhuSHYAvtO3pe7NLnYJcBqe1joEsfg8Xi6WJRWRwwbn57R8f0KyQX0s_tn26McUPduI7-kWJyNAV7PyEbsh0jZnp2ffKSPOswFv9qfx6THxfnt6dfqqtvnxenJ1cVCiaGygpQwGqUTunGdVBrIThCPffCtUIgKNvxjtettgKZlpLL2jEugbHWcyvmx-Tdbu469w-jL4NZhWJ9jJh8PxajpdKaQfNfyCYna80n-GEHbe5Lyb4z6xxWmDeGgdmWb_4qf9Jv9mPHduXdwe7bnvK3-xyLxdhlTDaUAxNaN7zZjql2LJTBPx5izPdG6bmW5vb7jbm4-Srhkl-bs8m_33m0xdz1Y05Tyf9c8A8j7KXe</recordid><startdate>19930401</startdate><enddate>19930401</enddate><creator>Runyon, Gregory T</creator><creator>Lohman, Timothy M</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7TM</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>19930401</creationdate><title>Kinetics of Escherichia coli helicase II-catalyzed unwinding of fully duplex and nicked circular DNA</title><author>Runyon, Gregory T ; Lohman, Timothy M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a414t-c406018a5d679df087442a083e4db44a06cf2f28b7c4a1755258d125011be2c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Adenosine Triphosphatases - metabolism</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>Biological and medical sciences</topic><topic>DNA - metabolism</topic><topic>DNA Helicases</topic><topic>DNA, Circular - metabolism</topic><topic>Electrophoresis, Agar Gel</topic><topic>Enzymes and enzyme inhibitors</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli Proteins</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Isomerases</topic><topic>Kinetics</topic><topic>Mathematics</topic><topic>Models, Biological</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Runyon, Gregory T</creatorcontrib><creatorcontrib>Lohman, Timothy M</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Nucleic Acids Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Runyon, Gregory T</au><au>Lohman, Timothy M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetics of Escherichia coli helicase II-catalyzed unwinding of fully duplex and nicked circular DNA</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>1993-04-01</date><risdate>1993</risdate><volume>32</volume><issue>15</issue><spage>4128</spage><epage>4138</epage><pages>4128-4138</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Escherichia coli helicase II (UvrD) protein can initiate unwinding of duplex DNA at blunt ends or nicks, although these reactions require excess protein. We have undertaken kinetic studies of these reactions in order to probe the mechanism of initiation of unwinding. DNA unwinding was monitored directly by using agarose gel electrophoresis and indirectly through the rate of ATP hydrolysis by helicase II in the presence of an ATP-regenerating system. In the presence of fully duplex DNA and excess helicase II, the rate of ATP hydrolysis displays a distinct lag phase before the final steady-state rate of hydrolysis is reached. This reflects the fact that ATP hydrolysis under these conditions results from helicase II binding to the ssDNA products of the unwinding reaction, rather than from an intrinsic duplex DNA-dependent ATPase activity. Unwinding of short blunt-ended duplex DNA (341 and 849 base pairs) occurs in an "all-or-none" reaction, indicating that initiation of unwinding by helicase II is rate-limiting. We propose a minimal mechanism for the initiation of DNA unwinding by helicase II which includes a binding step followed by the rate-limiting formation of an initiation complex, possibly involving protein dimerization, and we have determined the phenomenological kinetic parameters describing this mechanism. Unwinding of a series of DNA substrates containing different initiation sites (e.g., blunt ends, internal nicks, and four-nucleotide 3' vs 5' ssDNA flanking regions) indicates that the rate of initiation is slowest at nicks and, surprisingly, at ends possessing a four-nucleotide 3' ssDNA flanking region.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>8471620</pmid><doi>10.1021/bi00066a039</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 1993-04, Vol.32 (15), p.4128-4138
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_75677109
source ACS CRKN Legacy Archives
subjects Adenosine Triphosphatases - metabolism
Analytical, structural and metabolic biochemistry
Biological and medical sciences
DNA - metabolism
DNA Helicases
DNA, Circular - metabolism
Electrophoresis, Agar Gel
Enzymes and enzyme inhibitors
Escherichia coli
Escherichia coli - enzymology
Escherichia coli Proteins
Fundamental and applied biological sciences. Psychology
Isomerases
Kinetics
Mathematics
Models, Biological
Substrate Specificity
title Kinetics of Escherichia coli helicase II-catalyzed unwinding of fully duplex and nicked circular DNA
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T19%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetics%20of%20Escherichia%20coli%20helicase%20II-catalyzed%20unwinding%20of%20fully%20duplex%20and%20nicked%20circular%20DNA&rft.jtitle=Biochemistry%20(Easton)&rft.au=Runyon,%20Gregory%20T&rft.date=1993-04-01&rft.volume=32&rft.issue=15&rft.spage=4128&rft.epage=4138&rft.pages=4128-4138&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi00066a039&rft_dat=%3Cproquest_cross%3E16775872%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a414t-c406018a5d679df087442a083e4db44a06cf2f28b7c4a1755258d125011be2c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16775872&rft_id=info:pmid/8471620&rfr_iscdi=true