Loading…

Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo

The development of new blood vessels (angiogenesis) is required for many physiological processes including embryogenesis, wound healing and corpus luteum formation. Blood vessel neoformation is also important in the pathogenesis of many disorders, particularly rapid growth and metastasis of solid tu...

Full description

Saved in:
Bibliographic Details
Published in:Nature (London) 1993-04, Vol.362 (6423), p.841-844
Main Authors: Kim, K. Jin, Li, Bing, Winer, Jane, Armanini, Mark, Gillett, Nancy, Phillips, Heidi S, Ferrara, Napoleone
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of new blood vessels (angiogenesis) is required for many physiological processes including embryogenesis, wound healing and corpus luteum formation. Blood vessel neoformation is also important in the pathogenesis of many disorders, particularly rapid growth and metastasis of solid tumours. There are several potential mediators of tumour angiogenesis, including basic and acidic fibroblast growth factors, tumour necrosis factor-alpha and transforming factors-alpha and -beta. But it is unclear whether any of these agents actually mediates angiogenesis and tumour growth in vivo. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen and an angiogenesis inducer released by a variety of tumour cells and expressed in human tumours in situ. To test whether VEGF may be a tumour angiogenesis factor in vivo, we injected human rhabdomyosarcoma, glioblastoma multiforme or leiomyosarcoma cell lines into nude mice. We report here that treatment with a monoclonal antibody specific for VEGF inhibited the growth of the tumours, but had no effect on the growth rate of the tumour cells in vitro. The density of vessels was decreased in the antibody-treated tumours. These findings demonstrate that inhibition of the action of an angiogenic factor spontaneously produced by tumour cells may suppress tumour growth in vivo.
ISSN:0028-0836
1476-4687
DOI:10.1038/362841a0