Loading…

Mapping of α- and β-globin genes on Antarctic fish chromosomes by fluorescence in-situ hybridization

The pathways and mechanisms of genomic change that have led to the peculiar haemoglobinless phenotype of the white-blooded Antarctic icefishes (16 species in the family Channichthyidae) constitute an important model for understanding the rapid diversification of the Antarctic notothenioid fish flock...

Full description

Saved in:
Bibliographic Details
Published in:Chromosome research 2003-01, Vol.11 (6), p.633-640
Main Authors: Pisano, Eva, Cocca, Ennio, Mazzei, Federico, Ghigliotti, Laura, di Prisco, Guido, Detrich, 3rd, H William, Ozouf-Costaz, Catherine
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c304t-1070f8a2ca012b7213df1969ef3811ecf6b1778d48f04c868535364b543128da3
cites
container_end_page 640
container_issue 6
container_start_page 633
container_title Chromosome research
container_volume 11
creator Pisano, Eva
Cocca, Ennio
Mazzei, Federico
Ghigliotti, Laura
di Prisco, Guido
Detrich, 3rd, H William
Ozouf-Costaz, Catherine
description The pathways and mechanisms of genomic change that have led to the peculiar haemoglobinless phenotype of the white-blooded Antarctic icefishes (16 species in the family Channichthyidae) constitute an important model for understanding the rapid diversification of the Antarctic notothenioid fish flock. To provide complementary structural information on genomic change at globin-gene loci in Antarctic fish species, cytogenetic studies and in-situ chromosomal mapping have been undertaken. Using a DNA probe containing one α- and one β-globin gene from the embryonic/juvenile globin gene cluster of the red-blooded species Notothenia coriiceps, we mapped the cluster on the chromosomes of Antarctic teleosts by fluorescence in-situ hybridization. As anticipated on the basis of its molecular organization, the cluster was located on a single chromosome pair in all of the red-blooded fish species probed (N. coriiceps, N. angustata, Trematomus hansoni, T. pennellii). In contrast, the α/β-globin probe did not recognize complementary sequences on the chromosomes of the white-blooded species Chionodraco hamatus and Channichthys rhinoceratus. These results represent the first example of chromosomal mapping of embryonic/juvenile globin genes in teleostean fishes. Beyond its relevance to the evolutionary history of Antarctic notothenioids, this work contributes to our understanding of the evolution of the chromosomal loci of globin genes in fishes and other vertebrates.
doi_str_mv 10.1023/A:1024961103663
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_75714058</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75714058</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-1070f8a2ca012b7213df1969ef3811ecf6b1778d48f04c868535364b543128da3</originalsourceid><addsrcrecordid>eNpd0M9u1DAQBnALUdFt4cwNLA7cUmbiv-G2qqAgFfUAPUeOY--6SuzFTg7bt6IP0mfCUsuF0zfS99NoNIS8RbhAaNmn7ecavJOIwKRkL8gGhWKN1Lx7STbQSdWwOp-Ss1LuAEAzjq_IKXKBEhRuiP9hDocQdzR5-vinoSaO9PGh2U1pCJHuXHSFpki3cTHZLsFSH8qe2n1Ocyppru1wpH5aU3bFumgdDbEpYVnp_jjkMIZ7s4QUX5MTb6bi3jznObn9-uXX5bfm-ubq--X2urEM-NIgKPDatNYAtoNqkY0eO9k5zzSis14OqJQeufbArZZaMMEkHwRn2OrRsHPy8WnvIaffqytLP4d61zSZ6NJaeiUUchC6wg__wbu05lhvqwY0l0JgRe-e0TrMbuwPOcwmH_t_76vg_RPwJvVml0Ppb3-2UEtAJqAD9hfogHr4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>750846551</pqid></control><display><type>article</type><title>Mapping of α- and β-globin genes on Antarctic fish chromosomes by fluorescence in-situ hybridization</title><source>Springer Nature</source><creator>Pisano, Eva ; Cocca, Ennio ; Mazzei, Federico ; Ghigliotti, Laura ; di Prisco, Guido ; Detrich, 3rd, H William ; Ozouf-Costaz, Catherine</creator><creatorcontrib>Pisano, Eva ; Cocca, Ennio ; Mazzei, Federico ; Ghigliotti, Laura ; di Prisco, Guido ; Detrich, 3rd, H William ; Ozouf-Costaz, Catherine</creatorcontrib><description>The pathways and mechanisms of genomic change that have led to the peculiar haemoglobinless phenotype of the white-blooded Antarctic icefishes (16 species in the family Channichthyidae) constitute an important model for understanding the rapid diversification of the Antarctic notothenioid fish flock. To provide complementary structural information on genomic change at globin-gene loci in Antarctic fish species, cytogenetic studies and in-situ chromosomal mapping have been undertaken. Using a DNA probe containing one α- and one β-globin gene from the embryonic/juvenile globin gene cluster of the red-blooded species Notothenia coriiceps, we mapped the cluster on the chromosomes of Antarctic teleosts by fluorescence in-situ hybridization. As anticipated on the basis of its molecular organization, the cluster was located on a single chromosome pair in all of the red-blooded fish species probed (N. coriiceps, N. angustata, Trematomus hansoni, T. pennellii). In contrast, the α/β-globin probe did not recognize complementary sequences on the chromosomes of the white-blooded species Chionodraco hamatus and Channichthys rhinoceratus. These results represent the first example of chromosomal mapping of embryonic/juvenile globin genes in teleostean fishes. Beyond its relevance to the evolutionary history of Antarctic notothenioids, this work contributes to our understanding of the evolution of the chromosomal loci of globin genes in fishes and other vertebrates.</description><identifier>ISSN: 0967-3849</identifier><identifier>EISSN: 1573-6849</identifier><identifier>DOI: 10.1023/A:1024961103663</identifier><identifier>PMID: 14516071</identifier><language>eng</language><publisher>Netherlands: Kluwer Academic Publishers</publisher><subject>Animals ; Antarctic Regions ; Channichthyidae ; Chromosome Mapping ; Chromosomes ; Cytogenetics ; DNA Probes - genetics ; Embryos ; Evolutionary genetics ; Fluorescence in situ hybridization ; Gene mapping ; Gene Order - genetics ; Genes ; Genomics ; Globins - genetics ; Hybridization ; In Situ Hybridization, Fluorescence ; Notothenia coriiceps ; Perciformes - genetics ; Phenotypes ; Species ; Species Specificity ; Telomere - genetics</subject><ispartof>Chromosome research, 2003-01, Vol.11 (6), p.633-640</ispartof><rights>Kluwer Academic Publishers 2003.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-1070f8a2ca012b7213df1969ef3811ecf6b1778d48f04c868535364b543128da3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14516071$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pisano, Eva</creatorcontrib><creatorcontrib>Cocca, Ennio</creatorcontrib><creatorcontrib>Mazzei, Federico</creatorcontrib><creatorcontrib>Ghigliotti, Laura</creatorcontrib><creatorcontrib>di Prisco, Guido</creatorcontrib><creatorcontrib>Detrich, 3rd, H William</creatorcontrib><creatorcontrib>Ozouf-Costaz, Catherine</creatorcontrib><title>Mapping of α- and β-globin genes on Antarctic fish chromosomes by fluorescence in-situ hybridization</title><title>Chromosome research</title><addtitle>Chromosome Res</addtitle><description>The pathways and mechanisms of genomic change that have led to the peculiar haemoglobinless phenotype of the white-blooded Antarctic icefishes (16 species in the family Channichthyidae) constitute an important model for understanding the rapid diversification of the Antarctic notothenioid fish flock. To provide complementary structural information on genomic change at globin-gene loci in Antarctic fish species, cytogenetic studies and in-situ chromosomal mapping have been undertaken. Using a DNA probe containing one α- and one β-globin gene from the embryonic/juvenile globin gene cluster of the red-blooded species Notothenia coriiceps, we mapped the cluster on the chromosomes of Antarctic teleosts by fluorescence in-situ hybridization. As anticipated on the basis of its molecular organization, the cluster was located on a single chromosome pair in all of the red-blooded fish species probed (N. coriiceps, N. angustata, Trematomus hansoni, T. pennellii). In contrast, the α/β-globin probe did not recognize complementary sequences on the chromosomes of the white-blooded species Chionodraco hamatus and Channichthys rhinoceratus. These results represent the first example of chromosomal mapping of embryonic/juvenile globin genes in teleostean fishes. Beyond its relevance to the evolutionary history of Antarctic notothenioids, this work contributes to our understanding of the evolution of the chromosomal loci of globin genes in fishes and other vertebrates.</description><subject>Animals</subject><subject>Antarctic Regions</subject><subject>Channichthyidae</subject><subject>Chromosome Mapping</subject><subject>Chromosomes</subject><subject>Cytogenetics</subject><subject>DNA Probes - genetics</subject><subject>Embryos</subject><subject>Evolutionary genetics</subject><subject>Fluorescence in situ hybridization</subject><subject>Gene mapping</subject><subject>Gene Order - genetics</subject><subject>Genes</subject><subject>Genomics</subject><subject>Globins - genetics</subject><subject>Hybridization</subject><subject>In Situ Hybridization, Fluorescence</subject><subject>Notothenia coriiceps</subject><subject>Perciformes - genetics</subject><subject>Phenotypes</subject><subject>Species</subject><subject>Species Specificity</subject><subject>Telomere - genetics</subject><issn>0967-3849</issn><issn>1573-6849</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpd0M9u1DAQBnALUdFt4cwNLA7cUmbiv-G2qqAgFfUAPUeOY--6SuzFTg7bt6IP0mfCUsuF0zfS99NoNIS8RbhAaNmn7ecavJOIwKRkL8gGhWKN1Lx7STbQSdWwOp-Ss1LuAEAzjq_IKXKBEhRuiP9hDocQdzR5-vinoSaO9PGh2U1pCJHuXHSFpki3cTHZLsFSH8qe2n1Ocyppru1wpH5aU3bFumgdDbEpYVnp_jjkMIZ7s4QUX5MTb6bi3jznObn9-uXX5bfm-ubq--X2urEM-NIgKPDatNYAtoNqkY0eO9k5zzSis14OqJQeufbArZZaMMEkHwRn2OrRsHPy8WnvIaffqytLP4d61zSZ6NJaeiUUchC6wg__wbu05lhvqwY0l0JgRe-e0TrMbuwPOcwmH_t_76vg_RPwJvVml0Ppb3-2UEtAJqAD9hfogHr4</recordid><startdate>20030101</startdate><enddate>20030101</enddate><creator>Pisano, Eva</creator><creator>Cocca, Ennio</creator><creator>Mazzei, Federico</creator><creator>Ghigliotti, Laura</creator><creator>di Prisco, Guido</creator><creator>Detrich, 3rd, H William</creator><creator>Ozouf-Costaz, Catherine</creator><general>Kluwer Academic Publishers</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20030101</creationdate><title>Mapping of α- and β-globin genes on Antarctic fish chromosomes by fluorescence in-situ hybridization</title><author>Pisano, Eva ; Cocca, Ennio ; Mazzei, Federico ; Ghigliotti, Laura ; di Prisco, Guido ; Detrich, 3rd, H William ; Ozouf-Costaz, Catherine</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-1070f8a2ca012b7213df1969ef3811ecf6b1778d48f04c868535364b543128da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Animals</topic><topic>Antarctic Regions</topic><topic>Channichthyidae</topic><topic>Chromosome Mapping</topic><topic>Chromosomes</topic><topic>Cytogenetics</topic><topic>DNA Probes - genetics</topic><topic>Embryos</topic><topic>Evolutionary genetics</topic><topic>Fluorescence in situ hybridization</topic><topic>Gene mapping</topic><topic>Gene Order - genetics</topic><topic>Genes</topic><topic>Genomics</topic><topic>Globins - genetics</topic><topic>Hybridization</topic><topic>In Situ Hybridization, Fluorescence</topic><topic>Notothenia coriiceps</topic><topic>Perciformes - genetics</topic><topic>Phenotypes</topic><topic>Species</topic><topic>Species Specificity</topic><topic>Telomere - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pisano, Eva</creatorcontrib><creatorcontrib>Cocca, Ennio</creatorcontrib><creatorcontrib>Mazzei, Federico</creatorcontrib><creatorcontrib>Ghigliotti, Laura</creatorcontrib><creatorcontrib>di Prisco, Guido</creatorcontrib><creatorcontrib>Detrich, 3rd, H William</creatorcontrib><creatorcontrib>Ozouf-Costaz, Catherine</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Chromosome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pisano, Eva</au><au>Cocca, Ennio</au><au>Mazzei, Federico</au><au>Ghigliotti, Laura</au><au>di Prisco, Guido</au><au>Detrich, 3rd, H William</au><au>Ozouf-Costaz, Catherine</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping of α- and β-globin genes on Antarctic fish chromosomes by fluorescence in-situ hybridization</atitle><jtitle>Chromosome research</jtitle><addtitle>Chromosome Res</addtitle><date>2003-01-01</date><risdate>2003</risdate><volume>11</volume><issue>6</issue><spage>633</spage><epage>640</epage><pages>633-640</pages><issn>0967-3849</issn><eissn>1573-6849</eissn><abstract>The pathways and mechanisms of genomic change that have led to the peculiar haemoglobinless phenotype of the white-blooded Antarctic icefishes (16 species in the family Channichthyidae) constitute an important model for understanding the rapid diversification of the Antarctic notothenioid fish flock. To provide complementary structural information on genomic change at globin-gene loci in Antarctic fish species, cytogenetic studies and in-situ chromosomal mapping have been undertaken. Using a DNA probe containing one α- and one β-globin gene from the embryonic/juvenile globin gene cluster of the red-blooded species Notothenia coriiceps, we mapped the cluster on the chromosomes of Antarctic teleosts by fluorescence in-situ hybridization. As anticipated on the basis of its molecular organization, the cluster was located on a single chromosome pair in all of the red-blooded fish species probed (N. coriiceps, N. angustata, Trematomus hansoni, T. pennellii). In contrast, the α/β-globin probe did not recognize complementary sequences on the chromosomes of the white-blooded species Chionodraco hamatus and Channichthys rhinoceratus. These results represent the first example of chromosomal mapping of embryonic/juvenile globin genes in teleostean fishes. Beyond its relevance to the evolutionary history of Antarctic notothenioids, this work contributes to our understanding of the evolution of the chromosomal loci of globin genes in fishes and other vertebrates.</abstract><cop>Netherlands</cop><pub>Kluwer Academic Publishers</pub><pmid>14516071</pmid><doi>10.1023/A:1024961103663</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0967-3849
ispartof Chromosome research, 2003-01, Vol.11 (6), p.633-640
issn 0967-3849
1573-6849
language eng
recordid cdi_proquest_miscellaneous_75714058
source Springer Nature
subjects Animals
Antarctic Regions
Channichthyidae
Chromosome Mapping
Chromosomes
Cytogenetics
DNA Probes - genetics
Embryos
Evolutionary genetics
Fluorescence in situ hybridization
Gene mapping
Gene Order - genetics
Genes
Genomics
Globins - genetics
Hybridization
In Situ Hybridization, Fluorescence
Notothenia coriiceps
Perciformes - genetics
Phenotypes
Species
Species Specificity
Telomere - genetics
title Mapping of α- and β-globin genes on Antarctic fish chromosomes by fluorescence in-situ hybridization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T11%3A53%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20of%20%CE%B1-%20and%20%CE%B2-globin%20genes%20on%20Antarctic%20fish%20chromosomes%20by%20fluorescence%20in-situ%20hybridization&rft.jtitle=Chromosome%20research&rft.au=Pisano,%20Eva&rft.date=2003-01-01&rft.volume=11&rft.issue=6&rft.spage=633&rft.epage=640&rft.pages=633-640&rft.issn=0967-3849&rft.eissn=1573-6849&rft_id=info:doi/10.1023/A:1024961103663&rft_dat=%3Cproquest_pubme%3E75714058%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c304t-1070f8a2ca012b7213df1969ef3811ecf6b1778d48f04c868535364b543128da3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=750846551&rft_id=info:pmid/14516071&rfr_iscdi=true