Loading…

Synthesis of Graphene Aerogel with High Electrical Conductivity

We report the synthesis of ultra-low-density three-dimensional macroassemblies of graphene sheets that exhibit high electrical conductivities and large internal surface areas. These materials are prepared as monolithic solids from suspensions of single-layer graphene oxide in which organic sol−gel c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Chemical Society 2010-10, Vol.132 (40), p.14067-14069
Main Authors: Worsley, Marcus A, Pauzauskie, Peter J, Olson, Tammy Y, Biener, Juergen, Satcher, Joe H, Baumann, Theodore F
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report the synthesis of ultra-low-density three-dimensional macroassemblies of graphene sheets that exhibit high electrical conductivities and large internal surface areas. These materials are prepared as monolithic solids from suspensions of single-layer graphene oxide in which organic sol−gel chemistry is used to cross-link the individual sheets. The resulting gels are supercritically dried and then thermally reduced to yield graphene aerogels with densities approaching 10 mg/cm3. In contrast to methods that utilize physical cross-links between GO, this approach provides covalent carbon bonding between the graphene sheets. These graphene aerogels exhibit an improvement in bulk electrical conductivity of more than 2 orders of magnitude (∼1 × 102 S/m) compared to graphene assemblies with physical cross-links alone (∼5 × 10−1 S/m). The graphene aerogels also possess large surface areas (584 m2/g) and pore volumes (2.96 cm3/g), making these materials viable candidates for use in energy storage, catalysis, and sensing applications.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja1072299