Loading…
Docking macromolecules with flexible segments
We address a major obstacle to macromolecular docking algorithms by presenting a new method that takes into account the induced conformational adjustment of flexible loops situated at a protein/macromolecule interface. The method, MC2, is based on a multiple copy representation of the loops, coupled...
Saved in:
Published in: | Journal of computational chemistry 2003-11, Vol.24 (15), p.1910-1920 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We address a major obstacle to macromolecular docking algorithms by presenting a new method that takes into account the induced conformational adjustment of flexible loops situated at a protein/macromolecule interface. The method, MC2, is based on a multiple copy representation of the loops, coupled with a Monte Carlo conformational search of the relative position of the macromolecules and their side chain conformations. The selection of optimal loop conformations takes place during Monte Carlo cycling by the iterative adjustment of the weight of each copy. We describe here the parameterization of the method and trials on a protein‐DNA complex of known 3‐D structure, involving the Drosophila prd paired domain protein and its target oligonucleotide Wenqing, X. et al., Cell 1995, 80, 639. We demonstrate that our algorithm can correctly configure and position this protein, despite its relatively complex interactions with both grooves of DNA. © 2003 Wiley Periodicals, Inc. J Comput Chem 24: 1910–1920, 2003 |
---|---|
ISSN: | 0192-8651 1096-987X |
DOI: | 10.1002/jcc.10329 |