Loading…

Cyclic GMP modulates depletion-activated Ca2+ entry in pancreatic acinar cells

In the pancreatic acinar cell, hormonal stimulation causes a rise in the intracellular free Ca2+ concentration by activating the inositol 1,4,5-trisphosphate-mediated release of Ca2+ from intracellular stores (Berridge, M. J., and Irvine, R. F. (1989) Nature 341, 197-205). The released Ca2+ is, for...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1993-05, Vol.268 (15), p.10808-10812
Main Authors: Bahnson, T.D., Pandol, S.J., Dionne, V.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the pancreatic acinar cell, hormonal stimulation causes a rise in the intracellular free Ca2+ concentration by activating the inositol 1,4,5-trisphosphate-mediated release of Ca2+ from intracellular stores (Berridge, M. J., and Irvine, R. F. (1989) Nature 341, 197-205). The released Ca2+ is, for the most part, extruded from the cell, necessitating a mechanism for Ca2+ entry and reloading of intracellular Ca2+ stores (Putney, J. W., Jr. (1990) Cell Calcium 11, 611-624; Rink, T. J. (1990) FEBS Lett. 268, 381-385). However, neither the mechanism of depletion-activated Ca2+ entry nor the signal that activates it is known. We report here that a sustained inward current of depletion-activated Ca2+ entry can be measured in pancreatic acinar cells using patch-clamp recording methods. Furthermore, the current can be blocked by an inhibitor of guanylyl cyclase, can be reactivated by 8-bromo-cGMP after inhibition, and can be activated in the absence of Ca2+ depletion by perfusing the cell with cGMP, but not cAMP. Intracellular perfusion with 1,3,4,5-inositol tetrakisphosphate did not activate an inward current, whereas perfusion with 2,4,5-inositol trisphosphate did activate an inward current. We conclude that cGMP may be an intracellular messenger that regulates depletion-activated Ca2+ entry.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)82057-9