Loading…
The use of static pressures of heavy gases within a quadrupole ion trap
The performance of quadrupole ion traps using argon or air as the buffer gas was evaluated and compared to the standard helium only operation. In all cases a pure buffer gas, not mixtures of gases, was investigated. Experiments were performed on a Bruker Esquire ion trap, a Finnigan LCQ, and a Finni...
Saved in:
Published in: | Journal of the American Society for Mass Spectrometry 2003-10, Vol.14 (10), p.1099-1109 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The performance of quadrupole ion traps using argon or air as the buffer gas was evaluated and compared to the standard helium only operation. In all cases a pure buffer gas, not mixtures of gases, was investigated. Experiments were performed on a Bruker Esquire ion trap, a Finnigan LCQ, and a Finnigan ITMS for comparison. The heavier gases were found to have some advantages, particularly in the areas of sensitivity and collision-induced dissociation efficiency; however, there is a significant resolution loss due to dissociation and/or scattering of ions. Additionally, the heavier gases were found to affect ion activation and deactivation during MS/MS, influencing the product ion intensities observed. Finally, the specific quadrupole ion trap design and the ion ejection parameters were found to be crucial in the quality of the spectra obtained in the presence of heavy gases. Operation with static pressures of heavy gases can be beneficial under certain design and operating conditions of the quadrupole ion trap. |
---|---|
ISSN: | 1044-0305 1879-1123 |
DOI: | 10.1016/S1044-0305(03)00404-5 |