Loading…
Near-IR imaging of atheromas in living arterial tissue
A near-IR imaging system and parallel vector supercomputer are used with a fiber-optic probe to produce chemical maps of the intimal surface of living arteries. Spectrometric information collected at hundreds of near-IR wavelengths is assembled into color pictures of the lipoprotein and apolipoprote...
Saved in:
Published in: | Analytical chemistry (Washington) 1993-05, Vol.65 (9), p.1247-1256 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a476t-b3d654d3b0597e2216f83b2b7036cc7c633658a11e456f791519982906ed405d3 |
---|---|
cites | |
container_end_page | 1256 |
container_issue | 9 |
container_start_page | 1247 |
container_title | Analytical chemistry (Washington) |
container_volume | 65 |
creator | Cassis, Lisa A Lodder, Robert A |
description | A near-IR imaging system and parallel vector supercomputer are used with a fiber-optic probe to produce chemical maps of the intimal surface of living arteries. Spectrometric information collected at hundreds of near-IR wavelengths is assembled into color pictures of the lipoprotein and apolipoprotein composition of atheromas using a vectorized 3-D cellular automaton-based algorithm that operates in parallel. The nonparametric mathematics developed to identify and quantify the constituents of each voxel in the artery wall avoid the matrix factorizations that generate excess error in other pattern recognition methods and permit analysis in a wavelength space of over 1000 dimensions using fewer than 100 calibration samples. A surface feature resolution of 5.5 microns and depth resolution of 6.5 microns are achieved with the system. Data from the fiber optics confirm the injury hypothesis of lesion formation and the differing roles of HDL and LDL in cholesterol transport. In clinical studies, approximately 1/2 of human arterial lesions appear fibrous and contain little or no lipid. As such, these lesions would not be expected to regress in response to cholesterol-lowering agents such as lovastatin. Identification of lesion types in vivo will enhance the efficacy of treatment programs. |
doi_str_mv | 10.1021/ac00057a023 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75764769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75764769</sourcerecordid><originalsourceid>FETCH-LOGICAL-a476t-b3d654d3b0597e2216f83b2b7036cc7c633658a11e456f791519982906ed405d3</originalsourceid><addsrcrecordid>eNpt0N9LHDEQB_AgLed5-uSzsJSiD2XtJNkku4_lqNeDq4q9ttCXMJvNauz-sMlu0f_eyB3XUvoUmPkwmfkSckzhnAKj79EAgFAIjO-RKRUMUpnn7BWZxjpPmQLYJwch3ANQClROyCQXwAWIKZGXFn26vElci7euu036OsHhzvq-xZC4Lmnc75cy-sF6h00yuBBGe0he19gEe7R9Z-Trxcf1_FO6ulos5x9WKWZKDmnJKymyipcgCmUZo7LOeclKBVwao4zkXIocKbWZkLUqqKBFkbMCpK0yEBWfkdPN3Aff_xptGHTrgrFNg53tx6CVUDL-VET45h9434--i7tpRlU8N2N5RO82yPg-BG9r_eDj3f5JU9AvUeq_ooz6ZDtyLFtb7ew2u9h_u-1jMNjUHjvjwo5liisGKrJ0w1wY7OOujf6nlpEIvb7-oj_Pv1__-FYs9Dz6s41HE_4c8b8FnwE0I5LN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217850428</pqid></control><display><type>article</type><title>Near-IR imaging of atheromas in living arterial tissue</title><source>ACS CRKN Legacy Archives</source><creator>Cassis, Lisa A ; Lodder, Robert A</creator><creatorcontrib>Cassis, Lisa A ; Lodder, Robert A</creatorcontrib><description>A near-IR imaging system and parallel vector supercomputer are used with a fiber-optic probe to produce chemical maps of the intimal surface of living arteries. Spectrometric information collected at hundreds of near-IR wavelengths is assembled into color pictures of the lipoprotein and apolipoprotein composition of atheromas using a vectorized 3-D cellular automaton-based algorithm that operates in parallel. The nonparametric mathematics developed to identify and quantify the constituents of each voxel in the artery wall avoid the matrix factorizations that generate excess error in other pattern recognition methods and permit analysis in a wavelength space of over 1000 dimensions using fewer than 100 calibration samples. A surface feature resolution of 5.5 microns and depth resolution of 6.5 microns are achieved with the system. Data from the fiber optics confirm the injury hypothesis of lesion formation and the differing roles of HDL and LDL in cholesterol transport. In clinical studies, approximately 1/2 of human arterial lesions appear fibrous and contain little or no lipid. As such, these lesions would not be expected to regress in response to cholesterol-lowering agents such as lovastatin. Identification of lesion types in vivo will enhance the efficacy of treatment programs.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac00057a023</identifier><identifier>PMID: 8503505</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Apolipoproteins - metabolism ; Arteries - metabolism ; Arteries - pathology ; Arteriosclerosis - metabolism ; Arteriosclerosis - pathology ; Biochemistry ; Biological and medical sciences ; Cardiovascular system ; Circulatory system ; Humans ; Image Processing, Computer-Assisted ; Investigative techniques, diagnostic techniques (general aspects) ; Lipoproteins - metabolism ; Medical research ; Medical sciences ; Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques ; Scientific imaging ; Spectrophotometry, Infrared</subject><ispartof>Analytical chemistry (Washington), 1993-05, Vol.65 (9), p.1247-1256</ispartof><rights>1993 INIST-CNRS</rights><rights>Copyright American Chemical Society May 1, 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a476t-b3d654d3b0597e2216f83b2b7036cc7c633658a11e456f791519982906ed405d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac00057a023$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac00057a023$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27063,27923,27924,56765,56815</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4737207$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8503505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cassis, Lisa A</creatorcontrib><creatorcontrib>Lodder, Robert A</creatorcontrib><title>Near-IR imaging of atheromas in living arterial tissue</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A near-IR imaging system and parallel vector supercomputer are used with a fiber-optic probe to produce chemical maps of the intimal surface of living arteries. Spectrometric information collected at hundreds of near-IR wavelengths is assembled into color pictures of the lipoprotein and apolipoprotein composition of atheromas using a vectorized 3-D cellular automaton-based algorithm that operates in parallel. The nonparametric mathematics developed to identify and quantify the constituents of each voxel in the artery wall avoid the matrix factorizations that generate excess error in other pattern recognition methods and permit analysis in a wavelength space of over 1000 dimensions using fewer than 100 calibration samples. A surface feature resolution of 5.5 microns and depth resolution of 6.5 microns are achieved with the system. Data from the fiber optics confirm the injury hypothesis of lesion formation and the differing roles of HDL and LDL in cholesterol transport. In clinical studies, approximately 1/2 of human arterial lesions appear fibrous and contain little or no lipid. As such, these lesions would not be expected to regress in response to cholesterol-lowering agents such as lovastatin. Identification of lesion types in vivo will enhance the efficacy of treatment programs.</description><subject>Apolipoproteins - metabolism</subject><subject>Arteries - metabolism</subject><subject>Arteries - pathology</subject><subject>Arteriosclerosis - metabolism</subject><subject>Arteriosclerosis - pathology</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Cardiovascular system</subject><subject>Circulatory system</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Lipoproteins - metabolism</subject><subject>Medical research</subject><subject>Medical sciences</subject><subject>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><subject>Scientific imaging</subject><subject>Spectrophotometry, Infrared</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNpt0N9LHDEQB_AgLed5-uSzsJSiD2XtJNkku4_lqNeDq4q9ttCXMJvNauz-sMlu0f_eyB3XUvoUmPkwmfkSckzhnAKj79EAgFAIjO-RKRUMUpnn7BWZxjpPmQLYJwch3ANQClROyCQXwAWIKZGXFn26vElci7euu036OsHhzvq-xZC4Lmnc75cy-sF6h00yuBBGe0he19gEe7R9Z-Trxcf1_FO6ulos5x9WKWZKDmnJKymyipcgCmUZo7LOeclKBVwao4zkXIocKbWZkLUqqKBFkbMCpK0yEBWfkdPN3Aff_xptGHTrgrFNg53tx6CVUDL-VET45h9434--i7tpRlU8N2N5RO82yPg-BG9r_eDj3f5JU9AvUeq_ooz6ZDtyLFtb7ew2u9h_u-1jMNjUHjvjwo5liisGKrJ0w1wY7OOujf6nlpEIvb7-oj_Pv1__-FYs9Dz6s41HE_4c8b8FnwE0I5LN</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>Cassis, Lisa A</creator><creator>Lodder, Robert A</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19930501</creationdate><title>Near-IR imaging of atheromas in living arterial tissue</title><author>Cassis, Lisa A ; Lodder, Robert A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a476t-b3d654d3b0597e2216f83b2b7036cc7c633658a11e456f791519982906ed405d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Apolipoproteins - metabolism</topic><topic>Arteries - metabolism</topic><topic>Arteries - pathology</topic><topic>Arteriosclerosis - metabolism</topic><topic>Arteriosclerosis - pathology</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Cardiovascular system</topic><topic>Circulatory system</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Lipoproteins - metabolism</topic><topic>Medical research</topic><topic>Medical sciences</topic><topic>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</topic><topic>Scientific imaging</topic><topic>Spectrophotometry, Infrared</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cassis, Lisa A</creatorcontrib><creatorcontrib>Lodder, Robert A</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cassis, Lisa A</au><au>Lodder, Robert A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-IR imaging of atheromas in living arterial tissue</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>1993-05-01</date><risdate>1993</risdate><volume>65</volume><issue>9</issue><spage>1247</spage><epage>1256</epage><pages>1247-1256</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A near-IR imaging system and parallel vector supercomputer are used with a fiber-optic probe to produce chemical maps of the intimal surface of living arteries. Spectrometric information collected at hundreds of near-IR wavelengths is assembled into color pictures of the lipoprotein and apolipoprotein composition of atheromas using a vectorized 3-D cellular automaton-based algorithm that operates in parallel. The nonparametric mathematics developed to identify and quantify the constituents of each voxel in the artery wall avoid the matrix factorizations that generate excess error in other pattern recognition methods and permit analysis in a wavelength space of over 1000 dimensions using fewer than 100 calibration samples. A surface feature resolution of 5.5 microns and depth resolution of 6.5 microns are achieved with the system. Data from the fiber optics confirm the injury hypothesis of lesion formation and the differing roles of HDL and LDL in cholesterol transport. In clinical studies, approximately 1/2 of human arterial lesions appear fibrous and contain little or no lipid. As such, these lesions would not be expected to regress in response to cholesterol-lowering agents such as lovastatin. Identification of lesion types in vivo will enhance the efficacy of treatment programs.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>8503505</pmid><doi>10.1021/ac00057a023</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 1993-05, Vol.65 (9), p.1247-1256 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_75764769 |
source | ACS CRKN Legacy Archives |
subjects | Apolipoproteins - metabolism Arteries - metabolism Arteries - pathology Arteriosclerosis - metabolism Arteriosclerosis - pathology Biochemistry Biological and medical sciences Cardiovascular system Circulatory system Humans Image Processing, Computer-Assisted Investigative techniques, diagnostic techniques (general aspects) Lipoproteins - metabolism Medical research Medical sciences Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques Scientific imaging Spectrophotometry, Infrared |
title | Near-IR imaging of atheromas in living arterial tissue |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-IR%20imaging%20of%20atheromas%20in%20living%20arterial%20tissue&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Cassis,%20Lisa%20A&rft.date=1993-05-01&rft.volume=65&rft.issue=9&rft.spage=1247&rft.epage=1256&rft.pages=1247-1256&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac00057a023&rft_dat=%3Cproquest_cross%3E75764769%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a476t-b3d654d3b0597e2216f83b2b7036cc7c633658a11e456f791519982906ed405d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217850428&rft_id=info:pmid/8503505&rfr_iscdi=true |