Loading…

Near-IR imaging of atheromas in living arterial tissue

A near-IR imaging system and parallel vector supercomputer are used with a fiber-optic probe to produce chemical maps of the intimal surface of living arteries. Spectrometric information collected at hundreds of near-IR wavelengths is assembled into color pictures of the lipoprotein and apolipoprote...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 1993-05, Vol.65 (9), p.1247-1256
Main Authors: Cassis, Lisa A, Lodder, Robert A
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a476t-b3d654d3b0597e2216f83b2b7036cc7c633658a11e456f791519982906ed405d3
cites
container_end_page 1256
container_issue 9
container_start_page 1247
container_title Analytical chemistry (Washington)
container_volume 65
creator Cassis, Lisa A
Lodder, Robert A
description A near-IR imaging system and parallel vector supercomputer are used with a fiber-optic probe to produce chemical maps of the intimal surface of living arteries. Spectrometric information collected at hundreds of near-IR wavelengths is assembled into color pictures of the lipoprotein and apolipoprotein composition of atheromas using a vectorized 3-D cellular automaton-based algorithm that operates in parallel. The nonparametric mathematics developed to identify and quantify the constituents of each voxel in the artery wall avoid the matrix factorizations that generate excess error in other pattern recognition methods and permit analysis in a wavelength space of over 1000 dimensions using fewer than 100 calibration samples. A surface feature resolution of 5.5 microns and depth resolution of 6.5 microns are achieved with the system. Data from the fiber optics confirm the injury hypothesis of lesion formation and the differing roles of HDL and LDL in cholesterol transport. In clinical studies, approximately 1/2 of human arterial lesions appear fibrous and contain little or no lipid. As such, these lesions would not be expected to regress in response to cholesterol-lowering agents such as lovastatin. Identification of lesion types in vivo will enhance the efficacy of treatment programs.
doi_str_mv 10.1021/ac00057a023
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_75764769</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>75764769</sourcerecordid><originalsourceid>FETCH-LOGICAL-a476t-b3d654d3b0597e2216f83b2b7036cc7c633658a11e456f791519982906ed405d3</originalsourceid><addsrcrecordid>eNpt0N9LHDEQB_AgLed5-uSzsJSiD2XtJNkku4_lqNeDq4q9ttCXMJvNauz-sMlu0f_eyB3XUvoUmPkwmfkSckzhnAKj79EAgFAIjO-RKRUMUpnn7BWZxjpPmQLYJwch3ANQClROyCQXwAWIKZGXFn26vElci7euu036OsHhzvq-xZC4Lmnc75cy-sF6h00yuBBGe0he19gEe7R9Z-Trxcf1_FO6ulos5x9WKWZKDmnJKymyipcgCmUZo7LOeclKBVwao4zkXIocKbWZkLUqqKBFkbMCpK0yEBWfkdPN3Aff_xptGHTrgrFNg53tx6CVUDL-VET45h9434--i7tpRlU8N2N5RO82yPg-BG9r_eDj3f5JU9AvUeq_ooz6ZDtyLFtb7ew2u9h_u-1jMNjUHjvjwo5liisGKrJ0w1wY7OOujf6nlpEIvb7-oj_Pv1__-FYs9Dz6s41HE_4c8b8FnwE0I5LN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>217850428</pqid></control><display><type>article</type><title>Near-IR imaging of atheromas in living arterial tissue</title><source>ACS CRKN Legacy Archives</source><creator>Cassis, Lisa A ; Lodder, Robert A</creator><creatorcontrib>Cassis, Lisa A ; Lodder, Robert A</creatorcontrib><description>A near-IR imaging system and parallel vector supercomputer are used with a fiber-optic probe to produce chemical maps of the intimal surface of living arteries. Spectrometric information collected at hundreds of near-IR wavelengths is assembled into color pictures of the lipoprotein and apolipoprotein composition of atheromas using a vectorized 3-D cellular automaton-based algorithm that operates in parallel. The nonparametric mathematics developed to identify and quantify the constituents of each voxel in the artery wall avoid the matrix factorizations that generate excess error in other pattern recognition methods and permit analysis in a wavelength space of over 1000 dimensions using fewer than 100 calibration samples. A surface feature resolution of 5.5 microns and depth resolution of 6.5 microns are achieved with the system. Data from the fiber optics confirm the injury hypothesis of lesion formation and the differing roles of HDL and LDL in cholesterol transport. In clinical studies, approximately 1/2 of human arterial lesions appear fibrous and contain little or no lipid. As such, these lesions would not be expected to regress in response to cholesterol-lowering agents such as lovastatin. Identification of lesion types in vivo will enhance the efficacy of treatment programs.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/ac00057a023</identifier><identifier>PMID: 8503505</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Apolipoproteins - metabolism ; Arteries - metabolism ; Arteries - pathology ; Arteriosclerosis - metabolism ; Arteriosclerosis - pathology ; Biochemistry ; Biological and medical sciences ; Cardiovascular system ; Circulatory system ; Humans ; Image Processing, Computer-Assisted ; Investigative techniques, diagnostic techniques (general aspects) ; Lipoproteins - metabolism ; Medical research ; Medical sciences ; Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques ; Scientific imaging ; Spectrophotometry, Infrared</subject><ispartof>Analytical chemistry (Washington), 1993-05, Vol.65 (9), p.1247-1256</ispartof><rights>1993 INIST-CNRS</rights><rights>Copyright American Chemical Society May 1, 1993</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a476t-b3d654d3b0597e2216f83b2b7036cc7c633658a11e456f791519982906ed405d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/ac00057a023$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/ac00057a023$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,27063,27923,27924,56765,56815</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4737207$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8503505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cassis, Lisa A</creatorcontrib><creatorcontrib>Lodder, Robert A</creatorcontrib><title>Near-IR imaging of atheromas in living arterial tissue</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>A near-IR imaging system and parallel vector supercomputer are used with a fiber-optic probe to produce chemical maps of the intimal surface of living arteries. Spectrometric information collected at hundreds of near-IR wavelengths is assembled into color pictures of the lipoprotein and apolipoprotein composition of atheromas using a vectorized 3-D cellular automaton-based algorithm that operates in parallel. The nonparametric mathematics developed to identify and quantify the constituents of each voxel in the artery wall avoid the matrix factorizations that generate excess error in other pattern recognition methods and permit analysis in a wavelength space of over 1000 dimensions using fewer than 100 calibration samples. A surface feature resolution of 5.5 microns and depth resolution of 6.5 microns are achieved with the system. Data from the fiber optics confirm the injury hypothesis of lesion formation and the differing roles of HDL and LDL in cholesterol transport. In clinical studies, approximately 1/2 of human arterial lesions appear fibrous and contain little or no lipid. As such, these lesions would not be expected to regress in response to cholesterol-lowering agents such as lovastatin. Identification of lesion types in vivo will enhance the efficacy of treatment programs.</description><subject>Apolipoproteins - metabolism</subject><subject>Arteries - metabolism</subject><subject>Arteries - pathology</subject><subject>Arteriosclerosis - metabolism</subject><subject>Arteriosclerosis - pathology</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Cardiovascular system</subject><subject>Circulatory system</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Investigative techniques, diagnostic techniques (general aspects)</subject><subject>Lipoproteins - metabolism</subject><subject>Medical research</subject><subject>Medical sciences</subject><subject>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</subject><subject>Scientific imaging</subject><subject>Spectrophotometry, Infrared</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNpt0N9LHDEQB_AgLed5-uSzsJSiD2XtJNkku4_lqNeDq4q9ttCXMJvNauz-sMlu0f_eyB3XUvoUmPkwmfkSckzhnAKj79EAgFAIjO-RKRUMUpnn7BWZxjpPmQLYJwch3ANQClROyCQXwAWIKZGXFn26vElci7euu036OsHhzvq-xZC4Lmnc75cy-sF6h00yuBBGe0he19gEe7R9Z-Trxcf1_FO6ulos5x9WKWZKDmnJKymyipcgCmUZo7LOeclKBVwao4zkXIocKbWZkLUqqKBFkbMCpK0yEBWfkdPN3Aff_xptGHTrgrFNg53tx6CVUDL-VET45h9434--i7tpRlU8N2N5RO82yPg-BG9r_eDj3f5JU9AvUeq_ooz6ZDtyLFtb7ew2u9h_u-1jMNjUHjvjwo5liisGKrJ0w1wY7OOujf6nlpEIvb7-oj_Pv1__-FYs9Dz6s41HE_4c8b8FnwE0I5LN</recordid><startdate>19930501</startdate><enddate>19930501</enddate><creator>Cassis, Lisa A</creator><creator>Lodder, Robert A</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19930501</creationdate><title>Near-IR imaging of atheromas in living arterial tissue</title><author>Cassis, Lisa A ; Lodder, Robert A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a476t-b3d654d3b0597e2216f83b2b7036cc7c633658a11e456f791519982906ed405d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Apolipoproteins - metabolism</topic><topic>Arteries - metabolism</topic><topic>Arteries - pathology</topic><topic>Arteriosclerosis - metabolism</topic><topic>Arteriosclerosis - pathology</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Cardiovascular system</topic><topic>Circulatory system</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Investigative techniques, diagnostic techniques (general aspects)</topic><topic>Lipoproteins - metabolism</topic><topic>Medical research</topic><topic>Medical sciences</topic><topic>Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques</topic><topic>Scientific imaging</topic><topic>Spectrophotometry, Infrared</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cassis, Lisa A</creatorcontrib><creatorcontrib>Lodder, Robert A</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cassis, Lisa A</au><au>Lodder, Robert A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near-IR imaging of atheromas in living arterial tissue</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>1993-05-01</date><risdate>1993</risdate><volume>65</volume><issue>9</issue><spage>1247</spage><epage>1256</epage><pages>1247-1256</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>A near-IR imaging system and parallel vector supercomputer are used with a fiber-optic probe to produce chemical maps of the intimal surface of living arteries. Spectrometric information collected at hundreds of near-IR wavelengths is assembled into color pictures of the lipoprotein and apolipoprotein composition of atheromas using a vectorized 3-D cellular automaton-based algorithm that operates in parallel. The nonparametric mathematics developed to identify and quantify the constituents of each voxel in the artery wall avoid the matrix factorizations that generate excess error in other pattern recognition methods and permit analysis in a wavelength space of over 1000 dimensions using fewer than 100 calibration samples. A surface feature resolution of 5.5 microns and depth resolution of 6.5 microns are achieved with the system. Data from the fiber optics confirm the injury hypothesis of lesion formation and the differing roles of HDL and LDL in cholesterol transport. In clinical studies, approximately 1/2 of human arterial lesions appear fibrous and contain little or no lipid. As such, these lesions would not be expected to regress in response to cholesterol-lowering agents such as lovastatin. Identification of lesion types in vivo will enhance the efficacy of treatment programs.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>8503505</pmid><doi>10.1021/ac00057a023</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 1993-05, Vol.65 (9), p.1247-1256
issn 0003-2700
1520-6882
language eng
recordid cdi_proquest_miscellaneous_75764769
source ACS CRKN Legacy Archives
subjects Apolipoproteins - metabolism
Arteries - metabolism
Arteries - pathology
Arteriosclerosis - metabolism
Arteriosclerosis - pathology
Biochemistry
Biological and medical sciences
Cardiovascular system
Circulatory system
Humans
Image Processing, Computer-Assisted
Investigative techniques, diagnostic techniques (general aspects)
Lipoproteins - metabolism
Medical research
Medical sciences
Pathology. Cytology. Biochemistry. Spectrometry. Miscellaneous investigative techniques
Scientific imaging
Spectrophotometry, Infrared
title Near-IR imaging of atheromas in living arterial tissue
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A52%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near-IR%20imaging%20of%20atheromas%20in%20living%20arterial%20tissue&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Cassis,%20Lisa%20A&rft.date=1993-05-01&rft.volume=65&rft.issue=9&rft.spage=1247&rft.epage=1256&rft.pages=1247-1256&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/ac00057a023&rft_dat=%3Cproquest_cross%3E75764769%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a476t-b3d654d3b0597e2216f83b2b7036cc7c633658a11e456f791519982906ed405d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=217850428&rft_id=info:pmid/8503505&rfr_iscdi=true