Loading…
Frequent mutations in the GATA-1 gene in the transient myeloproliferative disorder of Down syndrome
Transient myeloproliferative disorder (TMD) is a leukemoid reaction occurring occasionally in Down syndrome newborn infants. Acute megakaryocytic leukemia (AMKL) develops in approximately 20% to 30% of the cases with TMD. Recently, acquired mutations in the N-terminal activation domain of the GATA-1...
Saved in:
Published in: | Blood 2003-10, Vol.102 (8), p.2960-2968 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Transient myeloproliferative disorder (TMD) is a leukemoid reaction occurring occasionally in Down syndrome newborn infants. Acute megakaryocytic leukemia (AMKL) develops in approximately 20% to 30% of the cases with TMD. Recently, acquired mutations in the N-terminal activation domain of the GATA-1 gene, encoding the erythroid/megakaryocytic transcription factor GATA-1, have been reported in Down syndrome–related AMKL (DS-AMKL). To understand the multistep leukemogenesis in Down syndrome, GATA-1 mutations were investigated in patients with TMD. We show here that mutations in the GATA-1 gene were detected in 21 of 22 cases with TMD. Most of the mutations in TMD were located in the regions including exon 2 and were essentially identical to those observed in DS-AMKL. In the DS-AMKL cell line, MGS, which itself expresses only a truncated mutant of GATA-1, expression of full-length GATA-1 induced the differentiation toward the erythroid lineage. However, expression of the short form of GATA-1 did not induce erythroid differentiation. These results indicate that expression of GATA-1 with a defective N-terminal activation domain contributes to the expansion of TMD blast cells and that other genetic changes contribute to the development of AMKL in Down syndrome. |
---|---|
ISSN: | 0006-4971 1528-0020 |
DOI: | 10.1182/blood-2003-02-0390 |