Loading…

A novel urokinase receptor-targeted inhibitor for plasmin and matrix metalloproteinases suppresses vein graft disease

Aims Matrix metalloproteinases (MMP) and plasminogen activator (PA)/plasmin-mediated proteolysis, especially at the cell surface, play important roles in matrix degeneration and smooth muscle cell migration, which largely contributes to vein graft failure. In this study, a novel hybrid protein was d...

Full description

Saved in:
Bibliographic Details
Published in:Cardiovascular research 2010-11, Vol.88 (2), p.367-375
Main Authors: Eefting, Daniel, Seghers, Leonard, Grimbergen, Jos M., de Vries, Margreet R., de Boer, Hetty C., Lardenoye, Jan-Willem H.P., Jukema, J. Wouter, van Bockel, J. Hajo, Quax, Paul H.A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aims Matrix metalloproteinases (MMP) and plasminogen activator (PA)/plasmin-mediated proteolysis, especially at the cell surface, play important roles in matrix degeneration and smooth muscle cell migration, which largely contributes to vein graft failure. In this study, a novel hybrid protein was designed to inhibit both protease systems simultaneously. MMP and plasmin activity were inhibited at the cell surface by this hybrid protein, consisting of the receptor-binding amino-terminal fragment (ATF) of urokinase-type PA, linked to both the tissue inhibitor of metalloproteinases (TIMP-1) and bovine pancreas trypsin inhibitor (BPTI), a potent protease inhibitor. The effect of overexpression of this protein on vein graft disease was studied. Methods and results A non-viral expression vector encoding the hybrid protein TIMP-1.ATF.BPTI was constructed and validated. Next, cultured segments of human veins were transfected with this vector. Expressing TIMP-1.ATF.BPTI in vein segments resulted in a mean 36 ± 14% reduction in neointima formation after 4 weeks. In vivo inhibition of vein graft disease by TIMP-1.ATF.BPTI is demonstrated in venous interpositions placed into carotid arteries of hypercholesterolaemic APOE*3Leiden mice. After 4 weeks, vein graft thickening was significantly inhibited in mice treated with the domains TIMP-1, ATF, or BPTI (36–49% reduction). In the TIMP-1.ATF.BPTI-treated mice, vein graft thickening was reduced by 67±4%, which was also significantly stronger when compared with the individual components. Conclusion These data provide evidence that cell surface-bound inhibition of the PA and MMP system by the hybrid protein TIMP-1.ATF.BPTI, overexpressed in distant tissues after electroporation-mediated non-viral gene transfer, is a powerful approach to prevent vein graft disease.
ISSN:0008-6363
1755-3245
DOI:10.1093/cvr/cvq203