Loading…

Composite superprism photonic crystal demultiplexer: analysis and design

We present the analysis and design of a superprism-based demultiplexer that employs both group and phase velocity dispersion of the photonic crystal (PhC). Simultaneous diffraction compensation and spatio-angular wavelength channel separation is realized in a slab region that divides the PhC. This a...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2010-09, Vol.18 (19), p.20518-20528
Main Authors: Khorshidahmad, Amin, Kirk, Andrew G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present the analysis and design of a superprism-based demultiplexer that employs both group and phase velocity dispersion of the photonic crystal (PhC). Simultaneous diffraction compensation and spatio-angular wavelength channel separation is realized in a slab region that divides the PhC. This avoids the excessive broadening of the beams inside the PhC and enhances the achievable angular dispersion of the conventional superprism topology. As a result, a compact demultiplexer with a relaxed requirement for low divergence input beams is attained. The dynamics of the beams envelops are considered based on the curvature of the band structure. Analysis shows at least 36-fold reduction of the PhC area and much smaller propagation length in slab compared to the preconditioned superprism, based on the same design model. PhC area scales as Δω(-2.5) with Δω being the channel spacing.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.18.020518