Loading…
Rotational diffusion of calcium-dependent adenosine 5'-triphosphatase in sarcoplasmic reticulum: a detailed study
The Ca2+-Mg2+ adenosine-5'-triphosphatase (ATPase) in sarcoplasmic reticulum has been covalently labeled with the phosphorescent triplet probe erythrosinyl 5-isothiocyanate. The rotational diffusion of the protein in the membrane at 25 degrees C was examined by measuring the time dependence of...
Saved in:
Published in: | Biochemistry (Easton) 1984-12, Vol.23 (26), p.6765-6776 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Ca2+-Mg2+ adenosine-5'-triphosphatase (ATPase) in sarcoplasmic reticulum has been covalently labeled with the phosphorescent triplet probe erythrosinyl 5-isothiocyanate. The rotational diffusion of the protein in the membrane at 25 degrees C was examined by measuring the time dependence of the phosphorescence emission anisotropy. Detailed analysis of both the total emission S(t) = Iv(t) + 2IH(t) and anisotropy R(t) = [Iv(t) - IH(t)]/[Iv(t) + 2IH(t)] curves shows the presence of multiple components. The latter is incompatible with a simple model of protein movement. The experimental data are consistent with a model in which the sum of four exponential components defines the phosphorescence decay. The anisotropy decay corresponds to a model in which the phosphor itself or a small phosphor-bearing segment reorients on a sub-microsecond time scale about an axis attached to a larger segment, which in turn reorients on a time scale of a few microseconds about an axis fixed in the frame of the ATPase. A fraction of the protein molecules rotate on a time scale of 100-200 microseconds about the normal to the bilayer, while the rest are rotationally stationary, at least on a sub-millisecond time scale. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00321a075 |