Loading…
Molecular characterization of RsMPK2, a C1 subgroup mitogen-activated protein kinase in the desert plant Reaumuria soongorica
Reaumuria soongorica (Pall.) Maxim. is a short woody shrub widely found in semi-arid areas of China, and can survive severe environmental stresses. To understand its potential signaling transduction pathway in stress tolerance, we investigated the participation of mitogen-activated protein kinases (...
Saved in:
Published in: | Plant physiology and biochemistry 2010-10, Vol.48 (10), p.836-844 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Reaumuria soongorica (Pall.) Maxim. is a short woody shrub widely found in semi-arid areas of China, and can survive severe environmental stresses. To understand its potential signaling transduction pathway in stress tolerance, we investigated the participation of mitogen-activated protein kinases (MAPKs) as possible mediators of abiotic stresses. A novel MAP kinase cDNA (
RsMPK2) that encodes a 374 amino acid protein was isolated from
R. soongorica.
RsMPK2 belongs to the C1 subgroup, which is still functionally uncharacterized compared to groups A and B; and contains all 11 of the conserved MAPK subdomains and the TEY phosphorylation motif.
RsMPK2 is expressed in vegetative (root, stem, leaf and callus) and reproductive (flower) organs. The transcripts of
RsMPK2 were rapidly accumulated at high levels when
R. soongorica was subjected to dehydration, salinity conditions and treatment with abscisic acid or hydrogen peroxide. Growth analysis of
Escherichia coli (srl::Tn10) cells transformed with pPROEXHT-
RsMPK2 showed that the expression products of
RsMPK2 do not act as an osmoprotectant. But, the inhibition of
RsMPK2 expression by the inhibitor U0126 induced a decrease of antioxidant enzyme activity under stresses, indicating that
RsMPK2 is involved in the regulation of the antioxidant defense system in the response to stress signaling. |
---|---|
ISSN: | 0981-9428 1873-2690 |
DOI: | 10.1016/j.plaphy.2010.07.001 |