Loading…

Probing DNA conformational changes with high temporal resolution by tethered particle motion

The tethered particle motion (TPM) technique informs about conformational changes of DNA molecules, e.g. upon looping or interaction with proteins, by tracking the Brownian motion of a particle probe tethered to a surface by a single DNA molecule and detecting changes of its amplitude of movement. W...

Full description

Saved in:
Bibliographic Details
Published in:Physical biology 2010-10, Vol.7 (4), p.046003-046003
Main Authors: Manghi, Manoel, Tardin, Catherine, Baglio, Julien, Rousseau, Philippe, Salomé, Laurence, Destainville, Nicolas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c416t-d484d58812293d167041872f64ad9a5937589a0fa53759c6ea1ea40994d097233
cites cdi_FETCH-LOGICAL-c416t-d484d58812293d167041872f64ad9a5937589a0fa53759c6ea1ea40994d097233
container_end_page 046003
container_issue 4
container_start_page 046003
container_title Physical biology
container_volume 7
creator Manghi, Manoel
Tardin, Catherine
Baglio, Julien
Rousseau, Philippe
Salomé, Laurence
Destainville, Nicolas
description The tethered particle motion (TPM) technique informs about conformational changes of DNA molecules, e.g. upon looping or interaction with proteins, by tracking the Brownian motion of a particle probe tethered to a surface by a single DNA molecule and detecting changes of its amplitude of movement. We discuss in this context the time resolution of TPM, which strongly depends on the particle-DNA complex relaxation time, i.e. the characteristic time it takes to explore its configuration space by diffusion. By comparing theory, simulations and experiments, we propose a calibration of TPM at the dynamical level: we analyze how the relaxation time grows with both DNA contour length (from 401 to 2080 base pairs) and particle radius (from 20 to 150 nm). Notably we demonstrate that, for a particle of radius 20 nm or less, the hydrodynamic friction induced by the particle and the surface does not significantly slow down the DNA. This enables us to determine the optimal time resolution of TPM in distinct experimental contexts which can be as short as 20 ms.
doi_str_mv 10.1088/1478-3975/7/4/046003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_759131676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>759131676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-d484d58812293d167041872f64ad9a5937589a0fa53759c6ea1ea40994d097233</originalsourceid><addsrcrecordid>eNp9kd9LwzAQx4Mobk7_A5G8ichs0qZN8jjmjwlDfdA3IWRtukbapiatsv_elM7pg_h0x93nvvflDoBTjK4wYizAhLJpxGkc0IAEiCQIRXtgvCvv_8pH4Mi5N4RCHiJ6CEYh4nHIcDgGr0_WrHS9htcPM5iaOje2kq02tSxhWsh6rRz81G0BC70uYKuqxljfssqZsus5uNr4clsoqzLYSNvqtFSwMn3vGBzksnTqZBsn4OX25nm-mC4f7-7ns-U0JThppxlhJIuZ9xPyKMMJRQQzGuYJkRmXMY9ozLhEuYx9xtNESawkQZyTDHEaRtEEXAy6hSxFY3Ul7UYYqcVithR9DaE4pixJPrBnzwe2sea9U64VlXapKktZK9M54TfgyHtIPEkGMrXGOavynTRGon-B6O8r-vsKKogYXuDHzrYLulWlst3Q9809cDkA2jQ_kn9IiSbLPR38Qf9n4As21Zt-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>759131676</pqid></control><display><type>article</type><title>Probing DNA conformational changes with high temporal resolution by tethered particle motion</title><source>Institute of Physics</source><creator>Manghi, Manoel ; Tardin, Catherine ; Baglio, Julien ; Rousseau, Philippe ; Salomé, Laurence ; Destainville, Nicolas</creator><creatorcontrib>Manghi, Manoel ; Tardin, Catherine ; Baglio, Julien ; Rousseau, Philippe ; Salomé, Laurence ; Destainville, Nicolas</creatorcontrib><description>The tethered particle motion (TPM) technique informs about conformational changes of DNA molecules, e.g. upon looping or interaction with proteins, by tracking the Brownian motion of a particle probe tethered to a surface by a single DNA molecule and detecting changes of its amplitude of movement. We discuss in this context the time resolution of TPM, which strongly depends on the particle-DNA complex relaxation time, i.e. the characteristic time it takes to explore its configuration space by diffusion. By comparing theory, simulations and experiments, we propose a calibration of TPM at the dynamical level: we analyze how the relaxation time grows with both DNA contour length (from 401 to 2080 base pairs) and particle radius (from 20 to 150 nm). Notably we demonstrate that, for a particle of radius 20 nm or less, the hydrodynamic friction induced by the particle and the surface does not significantly slow down the DNA. This enables us to determine the optimal time resolution of TPM in distinct experimental contexts which can be as short as 20 ms.</description><identifier>ISSN: 1478-3975</identifier><identifier>ISSN: 1478-3967</identifier><identifier>EISSN: 1478-3975</identifier><identifier>DOI: 10.1088/1478-3975/7/4/046003</identifier><identifier>PMID: 20952812</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Calibration ; Diffusion ; DNA - chemistry ; Molecular Probes ; Monte Carlo Method ; Nucleic Acid Conformation ; Physics</subject><ispartof>Physical biology, 2010-10, Vol.7 (4), p.046003-046003</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-d484d58812293d167041872f64ad9a5937589a0fa53759c6ea1ea40994d097233</citedby><cites>FETCH-LOGICAL-c416t-d484d58812293d167041872f64ad9a5937589a0fa53759c6ea1ea40994d097233</cites><orcidid>0000-0002-0146-3950 ; 0000-0002-6376-6527 ; 0000-0003-3867-5102 ; 0000-0001-9667-4154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20952812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00557866$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Manghi, Manoel</creatorcontrib><creatorcontrib>Tardin, Catherine</creatorcontrib><creatorcontrib>Baglio, Julien</creatorcontrib><creatorcontrib>Rousseau, Philippe</creatorcontrib><creatorcontrib>Salomé, Laurence</creatorcontrib><creatorcontrib>Destainville, Nicolas</creatorcontrib><title>Probing DNA conformational changes with high temporal resolution by tethered particle motion</title><title>Physical biology</title><addtitle>Phys Biol</addtitle><description>The tethered particle motion (TPM) technique informs about conformational changes of DNA molecules, e.g. upon looping or interaction with proteins, by tracking the Brownian motion of a particle probe tethered to a surface by a single DNA molecule and detecting changes of its amplitude of movement. We discuss in this context the time resolution of TPM, which strongly depends on the particle-DNA complex relaxation time, i.e. the characteristic time it takes to explore its configuration space by diffusion. By comparing theory, simulations and experiments, we propose a calibration of TPM at the dynamical level: we analyze how the relaxation time grows with both DNA contour length (from 401 to 2080 base pairs) and particle radius (from 20 to 150 nm). Notably we demonstrate that, for a particle of radius 20 nm or less, the hydrodynamic friction induced by the particle and the surface does not significantly slow down the DNA. This enables us to determine the optimal time resolution of TPM in distinct experimental contexts which can be as short as 20 ms.</description><subject>Calibration</subject><subject>Diffusion</subject><subject>DNA - chemistry</subject><subject>Molecular Probes</subject><subject>Monte Carlo Method</subject><subject>Nucleic Acid Conformation</subject><subject>Physics</subject><issn>1478-3975</issn><issn>1478-3967</issn><issn>1478-3975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kd9LwzAQx4Mobk7_A5G8ichs0qZN8jjmjwlDfdA3IWRtukbapiatsv_elM7pg_h0x93nvvflDoBTjK4wYizAhLJpxGkc0IAEiCQIRXtgvCvv_8pH4Mi5N4RCHiJ6CEYh4nHIcDgGr0_WrHS9htcPM5iaOje2kq02tSxhWsh6rRz81G0BC70uYKuqxljfssqZsus5uNr4clsoqzLYSNvqtFSwMn3vGBzksnTqZBsn4OX25nm-mC4f7-7ns-U0JThppxlhJIuZ9xPyKMMJRQQzGuYJkRmXMY9ozLhEuYx9xtNESawkQZyTDHEaRtEEXAy6hSxFY3Ul7UYYqcVithR9DaE4pixJPrBnzwe2sea9U64VlXapKktZK9M54TfgyHtIPEkGMrXGOavynTRGon-B6O8r-vsKKogYXuDHzrYLulWlst3Q9809cDkA2jQ_kn9IiSbLPR38Qf9n4As21Zt-</recordid><startdate>20101015</startdate><enddate>20101015</enddate><creator>Manghi, Manoel</creator><creator>Tardin, Catherine</creator><creator>Baglio, Julien</creator><creator>Rousseau, Philippe</creator><creator>Salomé, Laurence</creator><creator>Destainville, Nicolas</creator><general>IOP Publishing</general><general>Institute of Physics: Hybrid Open Access</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0146-3950</orcidid><orcidid>https://orcid.org/0000-0002-6376-6527</orcidid><orcidid>https://orcid.org/0000-0003-3867-5102</orcidid><orcidid>https://orcid.org/0000-0001-9667-4154</orcidid></search><sort><creationdate>20101015</creationdate><title>Probing DNA conformational changes with high temporal resolution by tethered particle motion</title><author>Manghi, Manoel ; Tardin, Catherine ; Baglio, Julien ; Rousseau, Philippe ; Salomé, Laurence ; Destainville, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-d484d58812293d167041872f64ad9a5937589a0fa53759c6ea1ea40994d097233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Calibration</topic><topic>Diffusion</topic><topic>DNA - chemistry</topic><topic>Molecular Probes</topic><topic>Monte Carlo Method</topic><topic>Nucleic Acid Conformation</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manghi, Manoel</creatorcontrib><creatorcontrib>Tardin, Catherine</creatorcontrib><creatorcontrib>Baglio, Julien</creatorcontrib><creatorcontrib>Rousseau, Philippe</creatorcontrib><creatorcontrib>Salomé, Laurence</creatorcontrib><creatorcontrib>Destainville, Nicolas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manghi, Manoel</au><au>Tardin, Catherine</au><au>Baglio, Julien</au><au>Rousseau, Philippe</au><au>Salomé, Laurence</au><au>Destainville, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing DNA conformational changes with high temporal resolution by tethered particle motion</atitle><jtitle>Physical biology</jtitle><addtitle>Phys Biol</addtitle><date>2010-10-15</date><risdate>2010</risdate><volume>7</volume><issue>4</issue><spage>046003</spage><epage>046003</epage><pages>046003-046003</pages><issn>1478-3975</issn><issn>1478-3967</issn><eissn>1478-3975</eissn><abstract>The tethered particle motion (TPM) technique informs about conformational changes of DNA molecules, e.g. upon looping or interaction with proteins, by tracking the Brownian motion of a particle probe tethered to a surface by a single DNA molecule and detecting changes of its amplitude of movement. We discuss in this context the time resolution of TPM, which strongly depends on the particle-DNA complex relaxation time, i.e. the characteristic time it takes to explore its configuration space by diffusion. By comparing theory, simulations and experiments, we propose a calibration of TPM at the dynamical level: we analyze how the relaxation time grows with both DNA contour length (from 401 to 2080 base pairs) and particle radius (from 20 to 150 nm). Notably we demonstrate that, for a particle of radius 20 nm or less, the hydrodynamic friction induced by the particle and the surface does not significantly slow down the DNA. This enables us to determine the optimal time resolution of TPM in distinct experimental contexts which can be as short as 20 ms.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>20952812</pmid><doi>10.1088/1478-3975/7/4/046003</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0146-3950</orcidid><orcidid>https://orcid.org/0000-0002-6376-6527</orcidid><orcidid>https://orcid.org/0000-0003-3867-5102</orcidid><orcidid>https://orcid.org/0000-0001-9667-4154</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1478-3975
ispartof Physical biology, 2010-10, Vol.7 (4), p.046003-046003
issn 1478-3975
1478-3967
1478-3975
language eng
recordid cdi_proquest_miscellaneous_759131676
source Institute of Physics
subjects Calibration
Diffusion
DNA - chemistry
Molecular Probes
Monte Carlo Method
Nucleic Acid Conformation
Physics
title Probing DNA conformational changes with high temporal resolution by tethered particle motion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20DNA%20conformational%20changes%20with%20high%20temporal%20resolution%20by%20tethered%20particle%20motion&rft.jtitle=Physical%20biology&rft.au=Manghi,%20Manoel&rft.date=2010-10-15&rft.volume=7&rft.issue=4&rft.spage=046003&rft.epage=046003&rft.pages=046003-046003&rft.issn=1478-3975&rft.eissn=1478-3975&rft_id=info:doi/10.1088/1478-3975/7/4/046003&rft_dat=%3Cproquest_cross%3E759131676%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-d484d58812293d167041872f64ad9a5937589a0fa53759c6ea1ea40994d097233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=759131676&rft_id=info:pmid/20952812&rfr_iscdi=true