Loading…
Probing DNA conformational changes with high temporal resolution by tethered particle motion
The tethered particle motion (TPM) technique informs about conformational changes of DNA molecules, e.g. upon looping or interaction with proteins, by tracking the Brownian motion of a particle probe tethered to a surface by a single DNA molecule and detecting changes of its amplitude of movement. W...
Saved in:
Published in: | Physical biology 2010-10, Vol.7 (4), p.046003-046003 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c416t-d484d58812293d167041872f64ad9a5937589a0fa53759c6ea1ea40994d097233 |
---|---|
cites | cdi_FETCH-LOGICAL-c416t-d484d58812293d167041872f64ad9a5937589a0fa53759c6ea1ea40994d097233 |
container_end_page | 046003 |
container_issue | 4 |
container_start_page | 046003 |
container_title | Physical biology |
container_volume | 7 |
creator | Manghi, Manoel Tardin, Catherine Baglio, Julien Rousseau, Philippe Salomé, Laurence Destainville, Nicolas |
description | The tethered particle motion (TPM) technique informs about conformational changes of DNA molecules, e.g. upon looping or interaction with proteins, by tracking the Brownian motion of a particle probe tethered to a surface by a single DNA molecule and detecting changes of its amplitude of movement. We discuss in this context the time resolution of TPM, which strongly depends on the particle-DNA complex relaxation time, i.e. the characteristic time it takes to explore its configuration space by diffusion. By comparing theory, simulations and experiments, we propose a calibration of TPM at the dynamical level: we analyze how the relaxation time grows with both DNA contour length (from 401 to 2080 base pairs) and particle radius (from 20 to 150 nm). Notably we demonstrate that, for a particle of radius 20 nm or less, the hydrodynamic friction induced by the particle and the surface does not significantly slow down the DNA. This enables us to determine the optimal time resolution of TPM in distinct experimental contexts which can be as short as 20 ms. |
doi_str_mv | 10.1088/1478-3975/7/4/046003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_759131676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>759131676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-d484d58812293d167041872f64ad9a5937589a0fa53759c6ea1ea40994d097233</originalsourceid><addsrcrecordid>eNp9kd9LwzAQx4Mobk7_A5G8ichs0qZN8jjmjwlDfdA3IWRtukbapiatsv_elM7pg_h0x93nvvflDoBTjK4wYizAhLJpxGkc0IAEiCQIRXtgvCvv_8pH4Mi5N4RCHiJ6CEYh4nHIcDgGr0_WrHS9htcPM5iaOje2kq02tSxhWsh6rRz81G0BC70uYKuqxljfssqZsus5uNr4clsoqzLYSNvqtFSwMn3vGBzksnTqZBsn4OX25nm-mC4f7-7ns-U0JThppxlhJIuZ9xPyKMMJRQQzGuYJkRmXMY9ozLhEuYx9xtNESawkQZyTDHEaRtEEXAy6hSxFY3Ul7UYYqcVithR9DaE4pixJPrBnzwe2sea9U64VlXapKktZK9M54TfgyHtIPEkGMrXGOavynTRGon-B6O8r-vsKKogYXuDHzrYLulWlst3Q9809cDkA2jQ_kn9IiSbLPR38Qf9n4As21Zt-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>759131676</pqid></control><display><type>article</type><title>Probing DNA conformational changes with high temporal resolution by tethered particle motion</title><source>Institute of Physics</source><creator>Manghi, Manoel ; Tardin, Catherine ; Baglio, Julien ; Rousseau, Philippe ; Salomé, Laurence ; Destainville, Nicolas</creator><creatorcontrib>Manghi, Manoel ; Tardin, Catherine ; Baglio, Julien ; Rousseau, Philippe ; Salomé, Laurence ; Destainville, Nicolas</creatorcontrib><description>The tethered particle motion (TPM) technique informs about conformational changes of DNA molecules, e.g. upon looping or interaction with proteins, by tracking the Brownian motion of a particle probe tethered to a surface by a single DNA molecule and detecting changes of its amplitude of movement. We discuss in this context the time resolution of TPM, which strongly depends on the particle-DNA complex relaxation time, i.e. the characteristic time it takes to explore its configuration space by diffusion. By comparing theory, simulations and experiments, we propose a calibration of TPM at the dynamical level: we analyze how the relaxation time grows with both DNA contour length (from 401 to 2080 base pairs) and particle radius (from 20 to 150 nm). Notably we demonstrate that, for a particle of radius 20 nm or less, the hydrodynamic friction induced by the particle and the surface does not significantly slow down the DNA. This enables us to determine the optimal time resolution of TPM in distinct experimental contexts which can be as short as 20 ms.</description><identifier>ISSN: 1478-3975</identifier><identifier>ISSN: 1478-3967</identifier><identifier>EISSN: 1478-3975</identifier><identifier>DOI: 10.1088/1478-3975/7/4/046003</identifier><identifier>PMID: 20952812</identifier><language>eng</language><publisher>England: IOP Publishing</publisher><subject>Calibration ; Diffusion ; DNA - chemistry ; Molecular Probes ; Monte Carlo Method ; Nucleic Acid Conformation ; Physics</subject><ispartof>Physical biology, 2010-10, Vol.7 (4), p.046003-046003</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-d484d58812293d167041872f64ad9a5937589a0fa53759c6ea1ea40994d097233</citedby><cites>FETCH-LOGICAL-c416t-d484d58812293d167041872f64ad9a5937589a0fa53759c6ea1ea40994d097233</cites><orcidid>0000-0002-0146-3950 ; 0000-0002-6376-6527 ; 0000-0003-3867-5102 ; 0000-0001-9667-4154</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20952812$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00557866$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Manghi, Manoel</creatorcontrib><creatorcontrib>Tardin, Catherine</creatorcontrib><creatorcontrib>Baglio, Julien</creatorcontrib><creatorcontrib>Rousseau, Philippe</creatorcontrib><creatorcontrib>Salomé, Laurence</creatorcontrib><creatorcontrib>Destainville, Nicolas</creatorcontrib><title>Probing DNA conformational changes with high temporal resolution by tethered particle motion</title><title>Physical biology</title><addtitle>Phys Biol</addtitle><description>The tethered particle motion (TPM) technique informs about conformational changes of DNA molecules, e.g. upon looping or interaction with proteins, by tracking the Brownian motion of a particle probe tethered to a surface by a single DNA molecule and detecting changes of its amplitude of movement. We discuss in this context the time resolution of TPM, which strongly depends on the particle-DNA complex relaxation time, i.e. the characteristic time it takes to explore its configuration space by diffusion. By comparing theory, simulations and experiments, we propose a calibration of TPM at the dynamical level: we analyze how the relaxation time grows with both DNA contour length (from 401 to 2080 base pairs) and particle radius (from 20 to 150 nm). Notably we demonstrate that, for a particle of radius 20 nm or less, the hydrodynamic friction induced by the particle and the surface does not significantly slow down the DNA. This enables us to determine the optimal time resolution of TPM in distinct experimental contexts which can be as short as 20 ms.</description><subject>Calibration</subject><subject>Diffusion</subject><subject>DNA - chemistry</subject><subject>Molecular Probes</subject><subject>Monte Carlo Method</subject><subject>Nucleic Acid Conformation</subject><subject>Physics</subject><issn>1478-3975</issn><issn>1478-3967</issn><issn>1478-3975</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kd9LwzAQx4Mobk7_A5G8ichs0qZN8jjmjwlDfdA3IWRtukbapiatsv_elM7pg_h0x93nvvflDoBTjK4wYizAhLJpxGkc0IAEiCQIRXtgvCvv_8pH4Mi5N4RCHiJ6CEYh4nHIcDgGr0_WrHS9htcPM5iaOje2kq02tSxhWsh6rRz81G0BC70uYKuqxljfssqZsus5uNr4clsoqzLYSNvqtFSwMn3vGBzksnTqZBsn4OX25nm-mC4f7-7ns-U0JThppxlhJIuZ9xPyKMMJRQQzGuYJkRmXMY9ozLhEuYx9xtNESawkQZyTDHEaRtEEXAy6hSxFY3Ul7UYYqcVithR9DaE4pixJPrBnzwe2sea9U64VlXapKktZK9M54TfgyHtIPEkGMrXGOavynTRGon-B6O8r-vsKKogYXuDHzrYLulWlst3Q9809cDkA2jQ_kn9IiSbLPR38Qf9n4As21Zt-</recordid><startdate>20101015</startdate><enddate>20101015</enddate><creator>Manghi, Manoel</creator><creator>Tardin, Catherine</creator><creator>Baglio, Julien</creator><creator>Rousseau, Philippe</creator><creator>Salomé, Laurence</creator><creator>Destainville, Nicolas</creator><general>IOP Publishing</general><general>Institute of Physics: Hybrid Open Access</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0146-3950</orcidid><orcidid>https://orcid.org/0000-0002-6376-6527</orcidid><orcidid>https://orcid.org/0000-0003-3867-5102</orcidid><orcidid>https://orcid.org/0000-0001-9667-4154</orcidid></search><sort><creationdate>20101015</creationdate><title>Probing DNA conformational changes with high temporal resolution by tethered particle motion</title><author>Manghi, Manoel ; Tardin, Catherine ; Baglio, Julien ; Rousseau, Philippe ; Salomé, Laurence ; Destainville, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-d484d58812293d167041872f64ad9a5937589a0fa53759c6ea1ea40994d097233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Calibration</topic><topic>Diffusion</topic><topic>DNA - chemistry</topic><topic>Molecular Probes</topic><topic>Monte Carlo Method</topic><topic>Nucleic Acid Conformation</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manghi, Manoel</creatorcontrib><creatorcontrib>Tardin, Catherine</creatorcontrib><creatorcontrib>Baglio, Julien</creatorcontrib><creatorcontrib>Rousseau, Philippe</creatorcontrib><creatorcontrib>Salomé, Laurence</creatorcontrib><creatorcontrib>Destainville, Nicolas</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Physical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manghi, Manoel</au><au>Tardin, Catherine</au><au>Baglio, Julien</au><au>Rousseau, Philippe</au><au>Salomé, Laurence</au><au>Destainville, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing DNA conformational changes with high temporal resolution by tethered particle motion</atitle><jtitle>Physical biology</jtitle><addtitle>Phys Biol</addtitle><date>2010-10-15</date><risdate>2010</risdate><volume>7</volume><issue>4</issue><spage>046003</spage><epage>046003</epage><pages>046003-046003</pages><issn>1478-3975</issn><issn>1478-3967</issn><eissn>1478-3975</eissn><abstract>The tethered particle motion (TPM) technique informs about conformational changes of DNA molecules, e.g. upon looping or interaction with proteins, by tracking the Brownian motion of a particle probe tethered to a surface by a single DNA molecule and detecting changes of its amplitude of movement. We discuss in this context the time resolution of TPM, which strongly depends on the particle-DNA complex relaxation time, i.e. the characteristic time it takes to explore its configuration space by diffusion. By comparing theory, simulations and experiments, we propose a calibration of TPM at the dynamical level: we analyze how the relaxation time grows with both DNA contour length (from 401 to 2080 base pairs) and particle radius (from 20 to 150 nm). Notably we demonstrate that, for a particle of radius 20 nm or less, the hydrodynamic friction induced by the particle and the surface does not significantly slow down the DNA. This enables us to determine the optimal time resolution of TPM in distinct experimental contexts which can be as short as 20 ms.</abstract><cop>England</cop><pub>IOP Publishing</pub><pmid>20952812</pmid><doi>10.1088/1478-3975/7/4/046003</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-0146-3950</orcidid><orcidid>https://orcid.org/0000-0002-6376-6527</orcidid><orcidid>https://orcid.org/0000-0003-3867-5102</orcidid><orcidid>https://orcid.org/0000-0001-9667-4154</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1478-3975 |
ispartof | Physical biology, 2010-10, Vol.7 (4), p.046003-046003 |
issn | 1478-3975 1478-3967 1478-3975 |
language | eng |
recordid | cdi_proquest_miscellaneous_759131676 |
source | Institute of Physics |
subjects | Calibration Diffusion DNA - chemistry Molecular Probes Monte Carlo Method Nucleic Acid Conformation Physics |
title | Probing DNA conformational changes with high temporal resolution by tethered particle motion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T03%3A46%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20DNA%20conformational%20changes%20with%20high%20temporal%20resolution%20by%20tethered%20particle%20motion&rft.jtitle=Physical%20biology&rft.au=Manghi,%20Manoel&rft.date=2010-10-15&rft.volume=7&rft.issue=4&rft.spage=046003&rft.epage=046003&rft.pages=046003-046003&rft.issn=1478-3975&rft.eissn=1478-3975&rft_id=info:doi/10.1088/1478-3975/7/4/046003&rft_dat=%3Cproquest_cross%3E759131676%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c416t-d484d58812293d167041872f64ad9a5937589a0fa53759c6ea1ea40994d097233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=759131676&rft_id=info:pmid/20952812&rfr_iscdi=true |