Loading…
Predicting DNAPL mass discharge from pool-dominated source zones
Models that link simplified descriptions of dense non-aqueous phase liquid (DNAPL) source zone architecture with predictions of mass flux can be effective screening tools for evaluation of source zone management strategies. Recent efforts have focused on the development and implementation of upscale...
Saved in:
Published in: | Journal of contaminant hydrology 2010-05, Vol.114 (1), p.18-34 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a482t-76f6b111891cc9d80c85b7ee1ec13c73ea905f259363d2c65aecc1ec961de0763 |
---|---|
cites | cdi_FETCH-LOGICAL-a482t-76f6b111891cc9d80c85b7ee1ec13c73ea905f259363d2c65aecc1ec961de0763 |
container_end_page | 34 |
container_issue | 1 |
container_start_page | 18 |
container_title | Journal of contaminant hydrology |
container_volume | 114 |
creator | Christ, John A. Ramsburg, C. Andrew Pennell, Kurt D. Abriola, Linda M. |
description | Models that link simplified descriptions of dense non-aqueous phase liquid (DNAPL) source zone architecture with predictions of mass flux can be effective screening tools for evaluation of source zone management strategies. Recent efforts have focused on the development and implementation of upscaled models to approximate the relationship between mass removal and flux-averaged, down-gradient contaminant concentration (or mass flux) reduction. The efficacy of these methods has been demonstrated for ganglia-dominated source zones. This work extends these methods to source zones dominated by high-saturation DNAPL pools. An existing upscaled mass transfer model was modified to reproduce dissolution behavior in pool-dominated scenarios by employing a two-domain (ganglia and pools) representation of the source zone. The two-domain upscaled model is parameterized using the initial fraction of the source zone that exists as pool regions, the initial fraction of contaminant eluting from these pool regions, and the flux-averaged down-gradient contaminant concentration. Comparisons of model predictions with a series of three-dimensional source zone numerical simulations and data from two-dimensional aquifer cell experiments demonstrate the ability of the model to predict DNAPL dissolution from ganglia- and pool-dominated source zones for all levels of mass recovery. |
doi_str_mv | 10.1016/j.jconhyd.2010.02.005 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_759309730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169772210000185</els_id><sourcerecordid>759309730</sourcerecordid><originalsourceid>FETCH-LOGICAL-a482t-76f6b111891cc9d80c85b7ee1ec13c73ea905f259363d2c65aecc1ec961de0763</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoqHwE0B7QXDZMLaz_jjRqnxKEfQAZ8sZz7aOdtfB3iCVX4-jBLjRkyX7eWde-WHsOYclB67ebJdbTNPtXVgKqHcglgDdA7bgRstWAdiHbFE522otxBl7UsoWALQB85idCRBCcykW7OI6U4g4x-mmeffl8nrdjL6UJsSCtz7fUNPnNDa7lIY2pDFOfqbQlLTPSM2vNFF5yh71fij07HSes-8f3n-7-tSuv378fHW5bv3KiLnVqlcbzrmxHNEGA2i6jSbihFyiluQtdL3orFQyCFSdJ8T6aBUPBFrJc_bqOHeX0489ldmNtSMNg58o7YvTNQpWS7iflNLYFZgD-fq_JFead2JlwFa0O6KYUymZerfLcfT5znFwByFu605C3EGIA-GqkJp7cVqx34wU_qb-GKjAyxPgC_qhz37CWP5xQlut-KHA2yNH9ZN_RsquYKQJq71MOLuQ4j1VfgMk9qoh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671524809</pqid></control><display><type>article</type><title>Predicting DNAPL mass discharge from pool-dominated source zones</title><source>ScienceDirect Journals</source><creator>Christ, John A. ; Ramsburg, C. Andrew ; Pennell, Kurt D. ; Abriola, Linda M.</creator><creatorcontrib>Christ, John A. ; Ramsburg, C. Andrew ; Pennell, Kurt D. ; Abriola, Linda M.</creatorcontrib><description>Models that link simplified descriptions of dense non-aqueous phase liquid (DNAPL) source zone architecture with predictions of mass flux can be effective screening tools for evaluation of source zone management strategies. Recent efforts have focused on the development and implementation of upscaled models to approximate the relationship between mass removal and flux-averaged, down-gradient contaminant concentration (or mass flux) reduction. The efficacy of these methods has been demonstrated for ganglia-dominated source zones. This work extends these methods to source zones dominated by high-saturation DNAPL pools. An existing upscaled mass transfer model was modified to reproduce dissolution behavior in pool-dominated scenarios by employing a two-domain (ganglia and pools) representation of the source zone. The two-domain upscaled model is parameterized using the initial fraction of the source zone that exists as pool regions, the initial fraction of contaminant eluting from these pool regions, and the flux-averaged down-gradient contaminant concentration. Comparisons of model predictions with a series of three-dimensional source zone numerical simulations and data from two-dimensional aquifer cell experiments demonstrate the ability of the model to predict DNAPL dissolution from ganglia- and pool-dominated source zones for all levels of mass recovery.</description><identifier>ISSN: 0169-7722</identifier><identifier>EISSN: 1873-6009</identifier><identifier>DOI: 10.1016/j.jconhyd.2010.02.005</identifier><identifier>PMID: 20227132</identifier><identifier>CODEN: JCOHE6</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Computer Simulation ; Contaminants ; Dissolution ; DNAPL ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Flux ; Hydrogeology ; Hydrology ; Hydrology. Hydrogeology ; Mass transfer ; Mathematical models ; Modeling ; Models, Chemical ; Pools ; Reduction ; Remediation ; Source zone ; Upscaled ; Water Pollutants, Chemical - chemistry</subject><ispartof>Journal of contaminant hydrology, 2010-05, Vol.114 (1), p.18-34</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><rights>Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a482t-76f6b111891cc9d80c85b7ee1ec13c73ea905f259363d2c65aecc1ec961de0763</citedby><cites>FETCH-LOGICAL-a482t-76f6b111891cc9d80c85b7ee1ec13c73ea905f259363d2c65aecc1ec961de0763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22797619$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20227132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Christ, John A.</creatorcontrib><creatorcontrib>Ramsburg, C. Andrew</creatorcontrib><creatorcontrib>Pennell, Kurt D.</creatorcontrib><creatorcontrib>Abriola, Linda M.</creatorcontrib><title>Predicting DNAPL mass discharge from pool-dominated source zones</title><title>Journal of contaminant hydrology</title><addtitle>J Contam Hydrol</addtitle><description>Models that link simplified descriptions of dense non-aqueous phase liquid (DNAPL) source zone architecture with predictions of mass flux can be effective screening tools for evaluation of source zone management strategies. Recent efforts have focused on the development and implementation of upscaled models to approximate the relationship between mass removal and flux-averaged, down-gradient contaminant concentration (or mass flux) reduction. The efficacy of these methods has been demonstrated for ganglia-dominated source zones. This work extends these methods to source zones dominated by high-saturation DNAPL pools. An existing upscaled mass transfer model was modified to reproduce dissolution behavior in pool-dominated scenarios by employing a two-domain (ganglia and pools) representation of the source zone. The two-domain upscaled model is parameterized using the initial fraction of the source zone that exists as pool regions, the initial fraction of contaminant eluting from these pool regions, and the flux-averaged down-gradient contaminant concentration. Comparisons of model predictions with a series of three-dimensional source zone numerical simulations and data from two-dimensional aquifer cell experiments demonstrate the ability of the model to predict DNAPL dissolution from ganglia- and pool-dominated source zones for all levels of mass recovery.</description><subject>Computer Simulation</subject><subject>Contaminants</subject><subject>Dissolution</subject><subject>DNAPL</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Models, Chemical</subject><subject>Pools</subject><subject>Reduction</subject><subject>Remediation</subject><subject>Source zone</subject><subject>Upscaled</subject><subject>Water Pollutants, Chemical - chemistry</subject><issn>0169-7722</issn><issn>1873-6009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhi0EoqHwE0B7QXDZMLaz_jjRqnxKEfQAZ8sZz7aOdtfB3iCVX4-jBLjRkyX7eWde-WHsOYclB67ebJdbTNPtXVgKqHcglgDdA7bgRstWAdiHbFE522otxBl7UsoWALQB85idCRBCcykW7OI6U4g4x-mmeffl8nrdjL6UJsSCtz7fUNPnNDa7lIY2pDFOfqbQlLTPSM2vNFF5yh71fij07HSes-8f3n-7-tSuv378fHW5bv3KiLnVqlcbzrmxHNEGA2i6jSbihFyiluQtdL3orFQyCFSdJ8T6aBUPBFrJc_bqOHeX0489ldmNtSMNg58o7YvTNQpWS7iflNLYFZgD-fq_JFead2JlwFa0O6KYUymZerfLcfT5znFwByFu605C3EGIA-GqkJp7cVqx34wU_qb-GKjAyxPgC_qhz37CWP5xQlut-KHA2yNH9ZN_RsquYKQJq71MOLuQ4j1VfgMk9qoh</recordid><startdate>20100520</startdate><enddate>20100520</enddate><creator>Christ, John A.</creator><creator>Ramsburg, C. Andrew</creator><creator>Pennell, Kurt D.</creator><creator>Abriola, Linda M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope></search><sort><creationdate>20100520</creationdate><title>Predicting DNAPL mass discharge from pool-dominated source zones</title><author>Christ, John A. ; Ramsburg, C. Andrew ; Pennell, Kurt D. ; Abriola, Linda M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a482t-76f6b111891cc9d80c85b7ee1ec13c73ea905f259363d2c65aecc1ec961de0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer Simulation</topic><topic>Contaminants</topic><topic>Dissolution</topic><topic>DNAPL</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Models, Chemical</topic><topic>Pools</topic><topic>Reduction</topic><topic>Remediation</topic><topic>Source zone</topic><topic>Upscaled</topic><topic>Water Pollutants, Chemical - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christ, John A.</creatorcontrib><creatorcontrib>Ramsburg, C. Andrew</creatorcontrib><creatorcontrib>Pennell, Kurt D.</creatorcontrib><creatorcontrib>Abriola, Linda M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of contaminant hydrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christ, John A.</au><au>Ramsburg, C. Andrew</au><au>Pennell, Kurt D.</au><au>Abriola, Linda M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting DNAPL mass discharge from pool-dominated source zones</atitle><jtitle>Journal of contaminant hydrology</jtitle><addtitle>J Contam Hydrol</addtitle><date>2010-05-20</date><risdate>2010</risdate><volume>114</volume><issue>1</issue><spage>18</spage><epage>34</epage><pages>18-34</pages><issn>0169-7722</issn><eissn>1873-6009</eissn><coden>JCOHE6</coden><abstract>Models that link simplified descriptions of dense non-aqueous phase liquid (DNAPL) source zone architecture with predictions of mass flux can be effective screening tools for evaluation of source zone management strategies. Recent efforts have focused on the development and implementation of upscaled models to approximate the relationship between mass removal and flux-averaged, down-gradient contaminant concentration (or mass flux) reduction. The efficacy of these methods has been demonstrated for ganglia-dominated source zones. This work extends these methods to source zones dominated by high-saturation DNAPL pools. An existing upscaled mass transfer model was modified to reproduce dissolution behavior in pool-dominated scenarios by employing a two-domain (ganglia and pools) representation of the source zone. The two-domain upscaled model is parameterized using the initial fraction of the source zone that exists as pool regions, the initial fraction of contaminant eluting from these pool regions, and the flux-averaged down-gradient contaminant concentration. Comparisons of model predictions with a series of three-dimensional source zone numerical simulations and data from two-dimensional aquifer cell experiments demonstrate the ability of the model to predict DNAPL dissolution from ganglia- and pool-dominated source zones for all levels of mass recovery.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>20227132</pmid><doi>10.1016/j.jconhyd.2010.02.005</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-7722 |
ispartof | Journal of contaminant hydrology, 2010-05, Vol.114 (1), p.18-34 |
issn | 0169-7722 1873-6009 |
language | eng |
recordid | cdi_proquest_miscellaneous_759309730 |
source | ScienceDirect Journals |
subjects | Computer Simulation Contaminants Dissolution DNAPL Earth sciences Earth, ocean, space Exact sciences and technology Flux Hydrogeology Hydrology Hydrology. Hydrogeology Mass transfer Mathematical models Modeling Models, Chemical Pools Reduction Remediation Source zone Upscaled Water Pollutants, Chemical - chemistry |
title | Predicting DNAPL mass discharge from pool-dominated source zones |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20DNAPL%20mass%20discharge%20from%20pool-dominated%20source%20zones&rft.jtitle=Journal%20of%20contaminant%20hydrology&rft.au=Christ,%20John%20A.&rft.date=2010-05-20&rft.volume=114&rft.issue=1&rft.spage=18&rft.epage=34&rft.pages=18-34&rft.issn=0169-7722&rft.eissn=1873-6009&rft.coden=JCOHE6&rft_id=info:doi/10.1016/j.jconhyd.2010.02.005&rft_dat=%3Cproquest_cross%3E759309730%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a482t-76f6b111891cc9d80c85b7ee1ec13c73ea905f259363d2c65aecc1ec961de0763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671524809&rft_id=info:pmid/20227132&rfr_iscdi=true |