Loading…

Predicting DNAPL mass discharge from pool-dominated source zones

Models that link simplified descriptions of dense non-aqueous phase liquid (DNAPL) source zone architecture with predictions of mass flux can be effective screening tools for evaluation of source zone management strategies. Recent efforts have focused on the development and implementation of upscale...

Full description

Saved in:
Bibliographic Details
Published in:Journal of contaminant hydrology 2010-05, Vol.114 (1), p.18-34
Main Authors: Christ, John A., Ramsburg, C. Andrew, Pennell, Kurt D., Abriola, Linda M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a482t-76f6b111891cc9d80c85b7ee1ec13c73ea905f259363d2c65aecc1ec961de0763
cites cdi_FETCH-LOGICAL-a482t-76f6b111891cc9d80c85b7ee1ec13c73ea905f259363d2c65aecc1ec961de0763
container_end_page 34
container_issue 1
container_start_page 18
container_title Journal of contaminant hydrology
container_volume 114
creator Christ, John A.
Ramsburg, C. Andrew
Pennell, Kurt D.
Abriola, Linda M.
description Models that link simplified descriptions of dense non-aqueous phase liquid (DNAPL) source zone architecture with predictions of mass flux can be effective screening tools for evaluation of source zone management strategies. Recent efforts have focused on the development and implementation of upscaled models to approximate the relationship between mass removal and flux-averaged, down-gradient contaminant concentration (or mass flux) reduction. The efficacy of these methods has been demonstrated for ganglia-dominated source zones. This work extends these methods to source zones dominated by high-saturation DNAPL pools. An existing upscaled mass transfer model was modified to reproduce dissolution behavior in pool-dominated scenarios by employing a two-domain (ganglia and pools) representation of the source zone. The two-domain upscaled model is parameterized using the initial fraction of the source zone that exists as pool regions, the initial fraction of contaminant eluting from these pool regions, and the flux-averaged down-gradient contaminant concentration. Comparisons of model predictions with a series of three-dimensional source zone numerical simulations and data from two-dimensional aquifer cell experiments demonstrate the ability of the model to predict DNAPL dissolution from ganglia- and pool-dominated source zones for all levels of mass recovery.
doi_str_mv 10.1016/j.jconhyd.2010.02.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_759309730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0169772210000185</els_id><sourcerecordid>759309730</sourcerecordid><originalsourceid>FETCH-LOGICAL-a482t-76f6b111891cc9d80c85b7ee1ec13c73ea905f259363d2c65aecc1ec961de0763</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoqHwE0B7QXDZMLaz_jjRqnxKEfQAZ8sZz7aOdtfB3iCVX4-jBLjRkyX7eWde-WHsOYclB67ebJdbTNPtXVgKqHcglgDdA7bgRstWAdiHbFE522otxBl7UsoWALQB85idCRBCcykW7OI6U4g4x-mmeffl8nrdjL6UJsSCtz7fUNPnNDa7lIY2pDFOfqbQlLTPSM2vNFF5yh71fij07HSes-8f3n-7-tSuv378fHW5bv3KiLnVqlcbzrmxHNEGA2i6jSbihFyiluQtdL3orFQyCFSdJ8T6aBUPBFrJc_bqOHeX0489ldmNtSMNg58o7YvTNQpWS7iflNLYFZgD-fq_JFead2JlwFa0O6KYUymZerfLcfT5znFwByFu605C3EGIA-GqkJp7cVqx34wU_qb-GKjAyxPgC_qhz37CWP5xQlut-KHA2yNH9ZN_RsquYKQJq71MOLuQ4j1VfgMk9qoh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671524809</pqid></control><display><type>article</type><title>Predicting DNAPL mass discharge from pool-dominated source zones</title><source>ScienceDirect Journals</source><creator>Christ, John A. ; Ramsburg, C. Andrew ; Pennell, Kurt D. ; Abriola, Linda M.</creator><creatorcontrib>Christ, John A. ; Ramsburg, C. Andrew ; Pennell, Kurt D. ; Abriola, Linda M.</creatorcontrib><description>Models that link simplified descriptions of dense non-aqueous phase liquid (DNAPL) source zone architecture with predictions of mass flux can be effective screening tools for evaluation of source zone management strategies. Recent efforts have focused on the development and implementation of upscaled models to approximate the relationship between mass removal and flux-averaged, down-gradient contaminant concentration (or mass flux) reduction. The efficacy of these methods has been demonstrated for ganglia-dominated source zones. This work extends these methods to source zones dominated by high-saturation DNAPL pools. An existing upscaled mass transfer model was modified to reproduce dissolution behavior in pool-dominated scenarios by employing a two-domain (ganglia and pools) representation of the source zone. The two-domain upscaled model is parameterized using the initial fraction of the source zone that exists as pool regions, the initial fraction of contaminant eluting from these pool regions, and the flux-averaged down-gradient contaminant concentration. Comparisons of model predictions with a series of three-dimensional source zone numerical simulations and data from two-dimensional aquifer cell experiments demonstrate the ability of the model to predict DNAPL dissolution from ganglia- and pool-dominated source zones for all levels of mass recovery.</description><identifier>ISSN: 0169-7722</identifier><identifier>EISSN: 1873-6009</identifier><identifier>DOI: 10.1016/j.jconhyd.2010.02.005</identifier><identifier>PMID: 20227132</identifier><identifier>CODEN: JCOHE6</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Computer Simulation ; Contaminants ; Dissolution ; DNAPL ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; Flux ; Hydrogeology ; Hydrology ; Hydrology. Hydrogeology ; Mass transfer ; Mathematical models ; Modeling ; Models, Chemical ; Pools ; Reduction ; Remediation ; Source zone ; Upscaled ; Water Pollutants, Chemical - chemistry</subject><ispartof>Journal of contaminant hydrology, 2010-05, Vol.114 (1), p.18-34</ispartof><rights>2010</rights><rights>2015 INIST-CNRS</rights><rights>Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a482t-76f6b111891cc9d80c85b7ee1ec13c73ea905f259363d2c65aecc1ec961de0763</citedby><cites>FETCH-LOGICAL-a482t-76f6b111891cc9d80c85b7ee1ec13c73ea905f259363d2c65aecc1ec961de0763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22797619$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20227132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Christ, John A.</creatorcontrib><creatorcontrib>Ramsburg, C. Andrew</creatorcontrib><creatorcontrib>Pennell, Kurt D.</creatorcontrib><creatorcontrib>Abriola, Linda M.</creatorcontrib><title>Predicting DNAPL mass discharge from pool-dominated source zones</title><title>Journal of contaminant hydrology</title><addtitle>J Contam Hydrol</addtitle><description>Models that link simplified descriptions of dense non-aqueous phase liquid (DNAPL) source zone architecture with predictions of mass flux can be effective screening tools for evaluation of source zone management strategies. Recent efforts have focused on the development and implementation of upscaled models to approximate the relationship between mass removal and flux-averaged, down-gradient contaminant concentration (or mass flux) reduction. The efficacy of these methods has been demonstrated for ganglia-dominated source zones. This work extends these methods to source zones dominated by high-saturation DNAPL pools. An existing upscaled mass transfer model was modified to reproduce dissolution behavior in pool-dominated scenarios by employing a two-domain (ganglia and pools) representation of the source zone. The two-domain upscaled model is parameterized using the initial fraction of the source zone that exists as pool regions, the initial fraction of contaminant eluting from these pool regions, and the flux-averaged down-gradient contaminant concentration. Comparisons of model predictions with a series of three-dimensional source zone numerical simulations and data from two-dimensional aquifer cell experiments demonstrate the ability of the model to predict DNAPL dissolution from ganglia- and pool-dominated source zones for all levels of mass recovery.</description><subject>Computer Simulation</subject><subject>Contaminants</subject><subject>Dissolution</subject><subject>DNAPL</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>Flux</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Mass transfer</subject><subject>Mathematical models</subject><subject>Modeling</subject><subject>Models, Chemical</subject><subject>Pools</subject><subject>Reduction</subject><subject>Remediation</subject><subject>Source zone</subject><subject>Upscaled</subject><subject>Water Pollutants, Chemical - chemistry</subject><issn>0169-7722</issn><issn>1873-6009</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEQhi0EoqHwE0B7QXDZMLaz_jjRqnxKEfQAZ8sZz7aOdtfB3iCVX4-jBLjRkyX7eWde-WHsOYclB67ebJdbTNPtXVgKqHcglgDdA7bgRstWAdiHbFE522otxBl7UsoWALQB85idCRBCcykW7OI6U4g4x-mmeffl8nrdjL6UJsSCtz7fUNPnNDa7lIY2pDFOfqbQlLTPSM2vNFF5yh71fij07HSes-8f3n-7-tSuv378fHW5bv3KiLnVqlcbzrmxHNEGA2i6jSbihFyiluQtdL3orFQyCFSdJ8T6aBUPBFrJc_bqOHeX0489ldmNtSMNg58o7YvTNQpWS7iflNLYFZgD-fq_JFead2JlwFa0O6KYUymZerfLcfT5znFwByFu605C3EGIA-GqkJp7cVqx34wU_qb-GKjAyxPgC_qhz37CWP5xQlut-KHA2yNH9ZN_RsquYKQJq71MOLuQ4j1VfgMk9qoh</recordid><startdate>20100520</startdate><enddate>20100520</enddate><creator>Christ, John A.</creator><creator>Ramsburg, C. Andrew</creator><creator>Pennell, Kurt D.</creator><creator>Abriola, Linda M.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>7X8</scope></search><sort><creationdate>20100520</creationdate><title>Predicting DNAPL mass discharge from pool-dominated source zones</title><author>Christ, John A. ; Ramsburg, C. Andrew ; Pennell, Kurt D. ; Abriola, Linda M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a482t-76f6b111891cc9d80c85b7ee1ec13c73ea905f259363d2c65aecc1ec961de0763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computer Simulation</topic><topic>Contaminants</topic><topic>Dissolution</topic><topic>DNAPL</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>Flux</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Mass transfer</topic><topic>Mathematical models</topic><topic>Modeling</topic><topic>Models, Chemical</topic><topic>Pools</topic><topic>Reduction</topic><topic>Remediation</topic><topic>Source zone</topic><topic>Upscaled</topic><topic>Water Pollutants, Chemical - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Christ, John A.</creatorcontrib><creatorcontrib>Ramsburg, C. Andrew</creatorcontrib><creatorcontrib>Pennell, Kurt D.</creatorcontrib><creatorcontrib>Abriola, Linda M.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of contaminant hydrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Christ, John A.</au><au>Ramsburg, C. Andrew</au><au>Pennell, Kurt D.</au><au>Abriola, Linda M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting DNAPL mass discharge from pool-dominated source zones</atitle><jtitle>Journal of contaminant hydrology</jtitle><addtitle>J Contam Hydrol</addtitle><date>2010-05-20</date><risdate>2010</risdate><volume>114</volume><issue>1</issue><spage>18</spage><epage>34</epage><pages>18-34</pages><issn>0169-7722</issn><eissn>1873-6009</eissn><coden>JCOHE6</coden><abstract>Models that link simplified descriptions of dense non-aqueous phase liquid (DNAPL) source zone architecture with predictions of mass flux can be effective screening tools for evaluation of source zone management strategies. Recent efforts have focused on the development and implementation of upscaled models to approximate the relationship between mass removal and flux-averaged, down-gradient contaminant concentration (or mass flux) reduction. The efficacy of these methods has been demonstrated for ganglia-dominated source zones. This work extends these methods to source zones dominated by high-saturation DNAPL pools. An existing upscaled mass transfer model was modified to reproduce dissolution behavior in pool-dominated scenarios by employing a two-domain (ganglia and pools) representation of the source zone. The two-domain upscaled model is parameterized using the initial fraction of the source zone that exists as pool regions, the initial fraction of contaminant eluting from these pool regions, and the flux-averaged down-gradient contaminant concentration. Comparisons of model predictions with a series of three-dimensional source zone numerical simulations and data from two-dimensional aquifer cell experiments demonstrate the ability of the model to predict DNAPL dissolution from ganglia- and pool-dominated source zones for all levels of mass recovery.</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>20227132</pmid><doi>10.1016/j.jconhyd.2010.02.005</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-7722
ispartof Journal of contaminant hydrology, 2010-05, Vol.114 (1), p.18-34
issn 0169-7722
1873-6009
language eng
recordid cdi_proquest_miscellaneous_759309730
source ScienceDirect Journals
subjects Computer Simulation
Contaminants
Dissolution
DNAPL
Earth sciences
Earth, ocean, space
Exact sciences and technology
Flux
Hydrogeology
Hydrology
Hydrology. Hydrogeology
Mass transfer
Mathematical models
Modeling
Models, Chemical
Pools
Reduction
Remediation
Source zone
Upscaled
Water Pollutants, Chemical - chemistry
title Predicting DNAPL mass discharge from pool-dominated source zones
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A40%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20DNAPL%20mass%20discharge%20from%20pool-dominated%20source%20zones&rft.jtitle=Journal%20of%20contaminant%20hydrology&rft.au=Christ,%20John%20A.&rft.date=2010-05-20&rft.volume=114&rft.issue=1&rft.spage=18&rft.epage=34&rft.pages=18-34&rft.issn=0169-7722&rft.eissn=1873-6009&rft.coden=JCOHE6&rft_id=info:doi/10.1016/j.jconhyd.2010.02.005&rft_dat=%3Cproquest_cross%3E759309730%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a482t-76f6b111891cc9d80c85b7ee1ec13c73ea905f259363d2c65aecc1ec961de0763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671524809&rft_id=info:pmid/20227132&rfr_iscdi=true