Loading…

Changing CO2 conditions during the end-Triassic inferred from stomatal frequency analysis on Lepidopteris ottonis (Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris

End-Triassic fluctuations in atmospheric carbon dioxide (CO2) concentration were reconstructed by the use of stomatal frequency analysis on a single plant species: the seedfern Lepidopteris ottonis (Goeppert) Schimper. Stomatal index showed no distinct intra- and interpinnule variation which makes i...

Full description

Saved in:
Bibliographic Details
Published in:Palaeogeography, palaeoclimatology, palaeoecology palaeoclimatology, palaeoecology, 2010-09, Vol.295 (1-2), p.146-161
Main Authors: Bonis, N.R., Van Konijnenburg-Van Cittert, J.H.A., Kürschner, W.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:End-Triassic fluctuations in atmospheric carbon dioxide (CO2) concentration were reconstructed by the use of stomatal frequency analysis on a single plant species: the seedfern Lepidopteris ottonis (Goeppert) Schimper. Stomatal index showed no distinct intra- and interpinnule variation which makes it a suitable proxy for past relative CO2 changes. Records of decreasing stomatal index and density from the bottom to the top of the Rhaetian-Hettangian Wuestenwelsberg section (Bavaria, Germany) indicate rising CO2 levels during the Triassic-Jurassic transition. Additionally, stomatal frequency data of fossil ginkgoalean leaves (Ginkgoites taeniatus (Braun) Harris) suggest a maximum palaeoatmospheric CO2 concentration of 2750ppmv for the latest Triassic.
ISSN:0031-0182
DOI:10.1016/j.palaeo.2010.05.034