Loading…
Changing CO2 conditions during the end-Triassic inferred from stomatal frequency analysis on Lepidopteris ottonis (Goeppert) Schimper and Ginkgoites taeniatus (Braun) Harris
End-Triassic fluctuations in atmospheric carbon dioxide (CO2) concentration were reconstructed by the use of stomatal frequency analysis on a single plant species: the seedfern Lepidopteris ottonis (Goeppert) Schimper. Stomatal index showed no distinct intra- and interpinnule variation which makes i...
Saved in:
Published in: | Palaeogeography, palaeoclimatology, palaeoecology palaeoclimatology, palaeoecology, 2010-09, Vol.295 (1-2), p.146-161 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | End-Triassic fluctuations in atmospheric carbon dioxide (CO2) concentration were reconstructed by the use of stomatal frequency analysis on a single plant species: the seedfern Lepidopteris ottonis (Goeppert) Schimper. Stomatal index showed no distinct intra- and interpinnule variation which makes it a suitable proxy for past relative CO2 changes. Records of decreasing stomatal index and density from the bottom to the top of the Rhaetian-Hettangian Wuestenwelsberg section (Bavaria, Germany) indicate rising CO2 levels during the Triassic-Jurassic transition. Additionally, stomatal frequency data of fossil ginkgoalean leaves (Ginkgoites taeniatus (Braun) Harris) suggest a maximum palaeoatmospheric CO2 concentration of 2750ppmv for the latest Triassic. |
---|---|
ISSN: | 0031-0182 |
DOI: | 10.1016/j.palaeo.2010.05.034 |