Loading…

Yeast mitochondrial RNase P: sequence of the RPM2 gene and demonstration that its product is a protein subunit of the enzyme

We report here the sequence of the RPM2 gene which codes for the 105-kDa protein previously purified from the mitochondria of Saccharomyces cerevisiae and shown by genetic techniques to be required for mitochondrial RNase P activity. The sequence predicts a primary translation product of 1202 residu...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1993-09, Vol.268 (26), p.19791-19796
Main Authors: Dang, Y L, Martin, N C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report here the sequence of the RPM2 gene which codes for the 105-kDa protein previously purified from the mitochondria of Saccharomyces cerevisiae and shown by genetic techniques to be required for mitochondrial RNase P activity. The sequence predicts a primary translation product of 1202 residues with a molecular mass of 139 kDa and no obvious sequence similarity to any known protein in the data bases. There are 122 amino-terminal amino acids predicted by the gene that are not found in the purified protein, some of which may play a role in mitochondrial targeting of the protein. Antibodies raised against a trpE- 105-kDa fusion protein recognize a 105-kDa protein in wild-type cells but not in cells carrying a disruption of the RMP2 gene. Immune, but not preimmune serum, immunoprecipitates the RNase P RNA and the mitochondrial RNase P activity. Thus, the 105-kDa protein forms a complex with RNase P RNA and is required for RNase P activity as predicted for a bona fide subunit of the enzyme.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(19)36583-4