Loading…
A nonthiazolidinedione peroxisome proliferator-activated receptor α/γ dual agonist CG301360 alleviates insulin resistance and lipid dysregulation in db/db mice
Activation of peroxisome proliferator-activated receptors (PPARs) have been implicated in the treatment of metabolic disorders with different mechanisms; PPARα agonists promote fatty acid oxidation and reduce hyperlipidemia, whereas PPARγ agonists regulate lipid redistribution from visceral fat to s...
Saved in:
Published in: | Molecular pharmacology 2010-11, Vol.78 (5), p.877-885 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Activation of peroxisome proliferator-activated receptors (PPARs) have been implicated in the treatment of metabolic disorders with different mechanisms; PPARα agonists promote fatty acid oxidation and reduce hyperlipidemia, whereas PPARγ agonists regulate lipid redistribution from visceral fat to subcutaneous fat and enhance insulin sensitivity. To achieve combined benefits from activated PPARs on lipid metabolism and insulin sensitivity, a number of PPARα/γ dual agonists have been developed. However, several adverse effects such as weight gain and organ failure of PPARα/γ dual agonists have been reported. By use of virtual ligand screening, we identified and characterized a novel PPARα/γ dual agonist, (R)-1-(4-(2-(5-methyl-2-p-tolyloxazol-4-yl)ethoxy)benzyl)piperidine-2-carboxylic acid (CG301360), exhibiting the improvement in insulin sensitivity and lipid metabolism. CG301360 selectively stimulated transcriptional activities of PPARα and PPARγ and induced expression of their target genes in a PPARα- and PPARγ-dependent manner. In cultured cells, CG301360 enhanced fatty acid oxidation and glucose uptake and it reduced pro-inflammatory gene expression. In db/db mice, CG301360 also restored insulin sensitivity and lipid homeostasis. Collectively, these data suggest that CG301360 would be a novel PPARα/γ agonist, which might be a potential lead compound to develop against insulin resistance and hyperlipidemia. |
---|---|
ISSN: | 0026-895X 1521-0111 |
DOI: | 10.1124/mol.110.065748 |