Loading…
Ca2+ transport and chemoreception in Paramecium
Intracellular Ca2+ levels in Paramecium must be tightly controlled, yet little is understood about the mechanisms of control. We describe here indirect evidence that a phosphoenzyme intermediate is the calmodulin-regulated plasma membrane Ca2+ pump and that a Ca(2+)-ATPase activity in pellicles (the...
Saved in:
Published in: | Journal of comparative physiology. B, Biochemical, systemic, and environmental physiology Biochemical, systemic, and environmental physiology, 1993, Vol.163 (4), p.288-296 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Intracellular Ca2+ levels in Paramecium must be tightly controlled, yet little is understood about the mechanisms of control. We describe here indirect evidence that a phosphoenzyme intermediate is the calmodulin-regulated plasma membrane Ca2+ pump and that a Ca(2+)-ATPase activity in pellicles (the complex of cell body surface membranes) is the enzyme correlate of the plasma membrane pump protein. A change in Ca2+ pump activity has been implicated in the chemoresponse of paramecia to some attractant stimuli. Indirect support for this is demonstrated using mutants with different modifications of calmodulin to correlate defects in chemoresponse with altered Ca2+ homeostasis and pump activity. |
---|---|
ISSN: | 0174-1578 1432-136X |
DOI: | 10.1007/BF00347779 |