Loading…

Modulation of the glycerol and ethanol syntheses in the yeast Saccharomyces kudriavzevii differs from that exhibited by Saccharomyces cerevisiae and their hybrid

In the last years there is an increasing demand to produce wines with higher glycerol levels and lower ethanol contents. The production of these compounds by yeasts is influenced by many environmental variables, and could be controlled by the choice of optimized cultivation conditions. The present w...

Full description

Saved in:
Bibliographic Details
Published in:Food microbiology 2010-08, Vol.27 (5), p.628-637
Main Authors: Arroyo-López, F. Noé, Pérez-Torrado, Roberto, Querol, Amparo, Barrio, Eladio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the last years there is an increasing demand to produce wines with higher glycerol levels and lower ethanol contents. The production of these compounds by yeasts is influenced by many environmental variables, and could be controlled by the choice of optimized cultivation conditions. The present work studies, in a wine model system, the effects of temperature, pH and sugar concentration on the glycerol and ethanol syntheses by yeasts Saccharomyces cerevisiae T73, the type strain of Saccharomyces kudriavzevii IFO 1802 T, and an interspecific hybrid between both species (W27), which was accomplished by the application of response surface methodology based in a central composite circumscribed design. Results show that carbon flux could be especially directed towards glycerol synthesis instead of ethanol at low pH, high sugar concentrations and low temperatures. In general, the non-wine yeast S. kudriavzevii produced higher glycerol levels and lower ethanol content than wine strains S. cerevisiae T73 and the hybrid W27, with specific and different glycerol production profiles as a function of temperature and pH. These results were congruent with the higher glycerol-3-phosphate dehydrogenase activities estimated for this species, chiefly at low temperatures (14 °C), which could explain why S. kudriavzevii is a cryotolerant yeast compared to S. cerevisiae.
ISSN:0740-0020
1095-9998
DOI:10.1016/j.fm.2010.02.001