Loading…

evaluation by laser Doppler anemometry of the correction algorithm based on Kaimal co-spectra for high frequency losses of EC flux measurements of CH₄ and N₂O

Eddy covariance (EC) technique is often used to determine greenhouse gas exchange at the earth's surface. In general, the instruments involved have a limited high frequency response which reduces the ability to detect the contribution to the flux of small eddies and in addition sensor separatio...

Full description

Saved in:
Bibliographic Details
Published in:Agricultural and forest meteorology 2010-06, Vol.150 (6), p.794-805
Main Authors: Kroon, P.S, Schuitmaker, A, Jonker, H.J.J, Tummers, M.J, Hensen, A, Bosveld, F.C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Eddy covariance (EC) technique is often used to determine greenhouse gas exchange at the earth's surface. In general, the instruments involved have a limited high frequency response which reduces the ability to detect the contribution to the flux of small eddies and in addition sensor separation gives high frequency losses. These missing contributions cause an EC flux underestimation which increases for higher values of the stability parameter z/L. Corrections can be performed based on the (empirical) Kaimal co-spectra; however, these were derived using instruments with a limited frequency response. In this study, the validity of the Kaimal spectrum during stable atmospheric conditions is assessed using laser Doppler anemometry (LDA) measurements of the vertical wind velocity at 1m height during several stable nights at Cabauw in the Netherlands. LDA provides a means to determine the entire turbulent energy spectrum, i.e., from the production scale down to the dissipation scale. Since the measured spectra are found to be in good agreement with the Kaimal spectra, we assume that the Kaimal co-spectra are valid as well. Next, the effect of high frequency correction based on Kaimal co-spectra is assessed using 1 month of EC flux data of CH₄ and N₂O measured by quantum cascade laser (QCL) spectrometry at Reeuwijk in the Netherlands. After correction, the cumulative emissions increased about 15% for both gases. This underlines the importance of correcting for high frequency losses.
ISSN:0168-1923
1873-2240
DOI:10.1016/j.agrformet.2009.08.009