Loading…
Simulation and optimisation of direct contact membrane distillation for energy efficiency
This paper describes the formulation of a computational framework for simulating and optimising DCMD to minimise the consumed energy. A simulation procedure for DCMD was established on the basis of equating heat and mass fluxes through different domains in the process. Steady-state simulations for a...
Saved in:
Published in: | Desalination 2010-09, Vol.259 (1), p.29-37 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c398t-fe7c9b53ca92eb55d4983a0d088beb0274cd90829a03d32cc2963e0a412c47e33 |
---|---|
cites | cdi_FETCH-LOGICAL-c398t-fe7c9b53ca92eb55d4983a0d088beb0274cd90829a03d32cc2963e0a412c47e33 |
container_end_page | 37 |
container_issue | 1 |
container_start_page | 29 |
container_title | Desalination |
container_volume | 259 |
creator | Bui, V.A. Vu, L.T.T. Nguyen, M.H. |
description | This paper describes the formulation of a computational framework for simulating and optimising DCMD to minimise the consumed energy. A simulation procedure for DCMD was established on the basis of equating heat and mass fluxes through different domains in the process. Steady-state simulations for a wide range of operating conditions were carried out. It was revealed that the highest achievable energy efficiency of DCMD within the tested range was about 49.9%.
A double loop optimisation problem was formulated in MATLAB to solve the highly nonlinear equations with unknown outlet and membrane surface conditions to implement the simulation procedure. An additional outer loop was also implemented to accommodate the dynamic condition of a real lab-scale DCMD system concentrating 1.5
kg glucose solution from 30 to 60% w/w. A pseudo-real-time dynamic optimisation was performed to minimise the energy expenses for the DCMD process. This energy accounted for the heat exchanged between the feed and permeate streams within the membrane module and the power for their pumping, while maintaining a minimum mass flux of 0.5
kg
m
−
2
h
−
1
. The optimal operating conditions found in this study could save the total energy consumption by 26.3%. |
doi_str_mv | 10.1016/j.desal.2010.04.041 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760202874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011916410002705</els_id><sourcerecordid>760202874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-fe7c9b53ca92eb55d4983a0d088beb0274cd90829a03d32cc2963e0a412c47e33</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKu_wM1sRDdTbx6dTBYupPiCggt14SpkMnckZWZSk6nQf2_qFJeFC5cczsk9fIRcUphRoMXtalZjNO2MQVJApKFHZEJLyXMhCnFMJgCU5ooW4pScxbhKT6Y4n5DPN9dtWjM432emrzO_Hlzn4ij4JqtdQDtk1veDSbvDrgqmx6THwbX7YONDhj2Gr22GTeOsw95uz8lJY9qIF_s9JR-PD--L53z5-vSyuF_mlqtyyBuUVlVzbo1iWM3ntVAlN1BDWVZYAZPC1gpKpgzwmjNrmSo4ghGUWSGR8ym5Hv9dB_-9wTjo1N9i6taj30QtC2DASimS8-agk0opKZ-LApKVj1YbfIwBG70OrjNhqynoHXK90n_I9Q65BpGGptTV_oCJ1rRNImVd_I8yDgCF2BW5G32YuPw4DDr-McORtq69O3jnF-WdmJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777135460</pqid></control><display><type>article</type><title>Simulation and optimisation of direct contact membrane distillation for energy efficiency</title><source>Elsevier</source><creator>Bui, V.A. ; Vu, L.T.T. ; Nguyen, M.H.</creator><creatorcontrib>Bui, V.A. ; Vu, L.T.T. ; Nguyen, M.H.</creatorcontrib><description>This paper describes the formulation of a computational framework for simulating and optimising DCMD to minimise the consumed energy. A simulation procedure for DCMD was established on the basis of equating heat and mass fluxes through different domains in the process. Steady-state simulations for a wide range of operating conditions were carried out. It was revealed that the highest achievable energy efficiency of DCMD within the tested range was about 49.9%.
A double loop optimisation problem was formulated in MATLAB to solve the highly nonlinear equations with unknown outlet and membrane surface conditions to implement the simulation procedure. An additional outer loop was also implemented to accommodate the dynamic condition of a real lab-scale DCMD system concentrating 1.5
kg glucose solution from 30 to 60% w/w. A pseudo-real-time dynamic optimisation was performed to minimise the energy expenses for the DCMD process. This energy accounted for the heat exchanged between the feed and permeate streams within the membrane module and the power for their pumping, while maintaining a minimum mass flux of 0.5
kg
m
−
2
h
−
1
. The optimal operating conditions found in this study could save the total energy consumption by 26.3%.</description><identifier>ISSN: 0011-9164</identifier><identifier>EISSN: 1873-4464</identifier><identifier>DOI: 10.1016/j.desal.2010.04.041</identifier><identifier>CODEN: DSLNAH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Chemical engineering ; Computational efficiency ; Computer simulation ; Computing time ; DCMD ; Direct contact membrane distillation ; Dynamical systems ; Energy efficiency ; Exact sciences and technology ; Fluxes ; Matlab ; Membrane separation (reverse osmosis, dialysis...) ; Membranes ; Nonlinear dynamics ; Optimisation ; Optimization ; Pollution ; Simulation</subject><ispartof>Desalination, 2010-09, Vol.259 (1), p.29-37</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-fe7c9b53ca92eb55d4983a0d088beb0274cd90829a03d32cc2963e0a412c47e33</citedby><cites>FETCH-LOGICAL-c398t-fe7c9b53ca92eb55d4983a0d088beb0274cd90829a03d32cc2963e0a412c47e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23000644$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bui, V.A.</creatorcontrib><creatorcontrib>Vu, L.T.T.</creatorcontrib><creatorcontrib>Nguyen, M.H.</creatorcontrib><title>Simulation and optimisation of direct contact membrane distillation for energy efficiency</title><title>Desalination</title><description>This paper describes the formulation of a computational framework for simulating and optimising DCMD to minimise the consumed energy. A simulation procedure for DCMD was established on the basis of equating heat and mass fluxes through different domains in the process. Steady-state simulations for a wide range of operating conditions were carried out. It was revealed that the highest achievable energy efficiency of DCMD within the tested range was about 49.9%.
A double loop optimisation problem was formulated in MATLAB to solve the highly nonlinear equations with unknown outlet and membrane surface conditions to implement the simulation procedure. An additional outer loop was also implemented to accommodate the dynamic condition of a real lab-scale DCMD system concentrating 1.5
kg glucose solution from 30 to 60% w/w. A pseudo-real-time dynamic optimisation was performed to minimise the energy expenses for the DCMD process. This energy accounted for the heat exchanged between the feed and permeate streams within the membrane module and the power for their pumping, while maintaining a minimum mass flux of 0.5
kg
m
−
2
h
−
1
. The optimal operating conditions found in this study could save the total energy consumption by 26.3%.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>DCMD</subject><subject>Direct contact membrane distillation</subject><subject>Dynamical systems</subject><subject>Energy efficiency</subject><subject>Exact sciences and technology</subject><subject>Fluxes</subject><subject>Matlab</subject><subject>Membrane separation (reverse osmosis, dialysis...)</subject><subject>Membranes</subject><subject>Nonlinear dynamics</subject><subject>Optimisation</subject><subject>Optimization</subject><subject>Pollution</subject><subject>Simulation</subject><issn>0011-9164</issn><issn>1873-4464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKu_wM1sRDdTbx6dTBYupPiCggt14SpkMnckZWZSk6nQf2_qFJeFC5cczsk9fIRcUphRoMXtalZjNO2MQVJApKFHZEJLyXMhCnFMJgCU5ooW4pScxbhKT6Y4n5DPN9dtWjM432emrzO_Hlzn4ij4JqtdQDtk1veDSbvDrgqmx6THwbX7YONDhj2Gr22GTeOsw95uz8lJY9qIF_s9JR-PD--L53z5-vSyuF_mlqtyyBuUVlVzbo1iWM3ntVAlN1BDWVZYAZPC1gpKpgzwmjNrmSo4ghGUWSGR8ym5Hv9dB_-9wTjo1N9i6taj30QtC2DASimS8-agk0opKZ-LApKVj1YbfIwBG70OrjNhqynoHXK90n_I9Q65BpGGptTV_oCJ1rRNImVd_I8yDgCF2BW5G32YuPw4DDr-McORtq69O3jnF-WdmJk</recordid><startdate>20100915</startdate><enddate>20100915</enddate><creator>Bui, V.A.</creator><creator>Vu, L.T.T.</creator><creator>Nguyen, M.H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7QH</scope><scope>7ST</scope><scope>7U6</scope><scope>7UA</scope><scope>SOI</scope></search><sort><creationdate>20100915</creationdate><title>Simulation and optimisation of direct contact membrane distillation for energy efficiency</title><author>Bui, V.A. ; Vu, L.T.T. ; Nguyen, M.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-fe7c9b53ca92eb55d4983a0d088beb0274cd90829a03d32cc2963e0a412c47e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>DCMD</topic><topic>Direct contact membrane distillation</topic><topic>Dynamical systems</topic><topic>Energy efficiency</topic><topic>Exact sciences and technology</topic><topic>Fluxes</topic><topic>Matlab</topic><topic>Membrane separation (reverse osmosis, dialysis...)</topic><topic>Membranes</topic><topic>Nonlinear dynamics</topic><topic>Optimisation</topic><topic>Optimization</topic><topic>Pollution</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bui, V.A.</creatorcontrib><creatorcontrib>Vu, L.T.T.</creatorcontrib><creatorcontrib>Nguyen, M.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bui, V.A.</au><au>Vu, L.T.T.</au><au>Nguyen, M.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation and optimisation of direct contact membrane distillation for energy efficiency</atitle><jtitle>Desalination</jtitle><date>2010-09-15</date><risdate>2010</risdate><volume>259</volume><issue>1</issue><spage>29</spage><epage>37</epage><pages>29-37</pages><issn>0011-9164</issn><eissn>1873-4464</eissn><coden>DSLNAH</coden><abstract>This paper describes the formulation of a computational framework for simulating and optimising DCMD to minimise the consumed energy. A simulation procedure for DCMD was established on the basis of equating heat and mass fluxes through different domains in the process. Steady-state simulations for a wide range of operating conditions were carried out. It was revealed that the highest achievable energy efficiency of DCMD within the tested range was about 49.9%.
A double loop optimisation problem was formulated in MATLAB to solve the highly nonlinear equations with unknown outlet and membrane surface conditions to implement the simulation procedure. An additional outer loop was also implemented to accommodate the dynamic condition of a real lab-scale DCMD system concentrating 1.5
kg glucose solution from 30 to 60% w/w. A pseudo-real-time dynamic optimisation was performed to minimise the energy expenses for the DCMD process. This energy accounted for the heat exchanged between the feed and permeate streams within the membrane module and the power for their pumping, while maintaining a minimum mass flux of 0.5
kg
m
−
2
h
−
1
. The optimal operating conditions found in this study could save the total energy consumption by 26.3%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.desal.2010.04.041</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-9164 |
ispartof | Desalination, 2010-09, Vol.259 (1), p.29-37 |
issn | 0011-9164 1873-4464 |
language | eng |
recordid | cdi_proquest_miscellaneous_760202874 |
source | Elsevier |
subjects | Applied sciences Chemical engineering Computational efficiency Computer simulation Computing time DCMD Direct contact membrane distillation Dynamical systems Energy efficiency Exact sciences and technology Fluxes Matlab Membrane separation (reverse osmosis, dialysis...) Membranes Nonlinear dynamics Optimisation Optimization Pollution Simulation |
title | Simulation and optimisation of direct contact membrane distillation for energy efficiency |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20and%20optimisation%20of%20direct%20contact%20membrane%20distillation%20for%20energy%20efficiency&rft.jtitle=Desalination&rft.au=Bui,%20V.A.&rft.date=2010-09-15&rft.volume=259&rft.issue=1&rft.spage=29&rft.epage=37&rft.pages=29-37&rft.issn=0011-9164&rft.eissn=1873-4464&rft.coden=DSLNAH&rft_id=info:doi/10.1016/j.desal.2010.04.041&rft_dat=%3Cproquest_cross%3E760202874%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-fe7c9b53ca92eb55d4983a0d088beb0274cd90829a03d32cc2963e0a412c47e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1777135460&rft_id=info:pmid/&rfr_iscdi=true |