Loading…

Simulation and optimisation of direct contact membrane distillation for energy efficiency

This paper describes the formulation of a computational framework for simulating and optimising DCMD to minimise the consumed energy. A simulation procedure for DCMD was established on the basis of equating heat and mass fluxes through different domains in the process. Steady-state simulations for a...

Full description

Saved in:
Bibliographic Details
Published in:Desalination 2010-09, Vol.259 (1), p.29-37
Main Authors: Bui, V.A., Vu, L.T.T., Nguyen, M.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c398t-fe7c9b53ca92eb55d4983a0d088beb0274cd90829a03d32cc2963e0a412c47e33
cites cdi_FETCH-LOGICAL-c398t-fe7c9b53ca92eb55d4983a0d088beb0274cd90829a03d32cc2963e0a412c47e33
container_end_page 37
container_issue 1
container_start_page 29
container_title Desalination
container_volume 259
creator Bui, V.A.
Vu, L.T.T.
Nguyen, M.H.
description This paper describes the formulation of a computational framework for simulating and optimising DCMD to minimise the consumed energy. A simulation procedure for DCMD was established on the basis of equating heat and mass fluxes through different domains in the process. Steady-state simulations for a wide range of operating conditions were carried out. It was revealed that the highest achievable energy efficiency of DCMD within the tested range was about 49.9%. A double loop optimisation problem was formulated in MATLAB to solve the highly nonlinear equations with unknown outlet and membrane surface conditions to implement the simulation procedure. An additional outer loop was also implemented to accommodate the dynamic condition of a real lab-scale DCMD system concentrating 1.5 kg glucose solution from 30 to 60% w/w. A pseudo-real-time dynamic optimisation was performed to minimise the energy expenses for the DCMD process. This energy accounted for the heat exchanged between the feed and permeate streams within the membrane module and the power for their pumping, while maintaining a minimum mass flux of 0.5 kg m − 2 h − 1 . The optimal operating conditions found in this study could save the total energy consumption by 26.3%.
doi_str_mv 10.1016/j.desal.2010.04.041
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760202874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0011916410002705</els_id><sourcerecordid>760202874</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-fe7c9b53ca92eb55d4983a0d088beb0274cd90829a03d32cc2963e0a412c47e33</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKu_wM1sRDdTbx6dTBYupPiCggt14SpkMnckZWZSk6nQf2_qFJeFC5cczsk9fIRcUphRoMXtalZjNO2MQVJApKFHZEJLyXMhCnFMJgCU5ooW4pScxbhKT6Y4n5DPN9dtWjM432emrzO_Hlzn4ij4JqtdQDtk1veDSbvDrgqmx6THwbX7YONDhj2Gr22GTeOsw95uz8lJY9qIF_s9JR-PD--L53z5-vSyuF_mlqtyyBuUVlVzbo1iWM3ntVAlN1BDWVZYAZPC1gpKpgzwmjNrmSo4ghGUWSGR8ym5Hv9dB_-9wTjo1N9i6taj30QtC2DASimS8-agk0opKZ-LApKVj1YbfIwBG70OrjNhqynoHXK90n_I9Q65BpGGptTV_oCJ1rRNImVd_I8yDgCF2BW5G32YuPw4DDr-McORtq69O3jnF-WdmJk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1777135460</pqid></control><display><type>article</type><title>Simulation and optimisation of direct contact membrane distillation for energy efficiency</title><source>Elsevier</source><creator>Bui, V.A. ; Vu, L.T.T. ; Nguyen, M.H.</creator><creatorcontrib>Bui, V.A. ; Vu, L.T.T. ; Nguyen, M.H.</creatorcontrib><description>This paper describes the formulation of a computational framework for simulating and optimising DCMD to minimise the consumed energy. A simulation procedure for DCMD was established on the basis of equating heat and mass fluxes through different domains in the process. Steady-state simulations for a wide range of operating conditions were carried out. It was revealed that the highest achievable energy efficiency of DCMD within the tested range was about 49.9%. A double loop optimisation problem was formulated in MATLAB to solve the highly nonlinear equations with unknown outlet and membrane surface conditions to implement the simulation procedure. An additional outer loop was also implemented to accommodate the dynamic condition of a real lab-scale DCMD system concentrating 1.5 kg glucose solution from 30 to 60% w/w. A pseudo-real-time dynamic optimisation was performed to minimise the energy expenses for the DCMD process. This energy accounted for the heat exchanged between the feed and permeate streams within the membrane module and the power for their pumping, while maintaining a minimum mass flux of 0.5 kg m − 2 h − 1 . The optimal operating conditions found in this study could save the total energy consumption by 26.3%.</description><identifier>ISSN: 0011-9164</identifier><identifier>EISSN: 1873-4464</identifier><identifier>DOI: 10.1016/j.desal.2010.04.041</identifier><identifier>CODEN: DSLNAH</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Applied sciences ; Chemical engineering ; Computational efficiency ; Computer simulation ; Computing time ; DCMD ; Direct contact membrane distillation ; Dynamical systems ; Energy efficiency ; Exact sciences and technology ; Fluxes ; Matlab ; Membrane separation (reverse osmosis, dialysis...) ; Membranes ; Nonlinear dynamics ; Optimisation ; Optimization ; Pollution ; Simulation</subject><ispartof>Desalination, 2010-09, Vol.259 (1), p.29-37</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-fe7c9b53ca92eb55d4983a0d088beb0274cd90829a03d32cc2963e0a412c47e33</citedby><cites>FETCH-LOGICAL-c398t-fe7c9b53ca92eb55d4983a0d088beb0274cd90829a03d32cc2963e0a412c47e33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23000644$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Bui, V.A.</creatorcontrib><creatorcontrib>Vu, L.T.T.</creatorcontrib><creatorcontrib>Nguyen, M.H.</creatorcontrib><title>Simulation and optimisation of direct contact membrane distillation for energy efficiency</title><title>Desalination</title><description>This paper describes the formulation of a computational framework for simulating and optimising DCMD to minimise the consumed energy. A simulation procedure for DCMD was established on the basis of equating heat and mass fluxes through different domains in the process. Steady-state simulations for a wide range of operating conditions were carried out. It was revealed that the highest achievable energy efficiency of DCMD within the tested range was about 49.9%. A double loop optimisation problem was formulated in MATLAB to solve the highly nonlinear equations with unknown outlet and membrane surface conditions to implement the simulation procedure. An additional outer loop was also implemented to accommodate the dynamic condition of a real lab-scale DCMD system concentrating 1.5 kg glucose solution from 30 to 60% w/w. A pseudo-real-time dynamic optimisation was performed to minimise the energy expenses for the DCMD process. This energy accounted for the heat exchanged between the feed and permeate streams within the membrane module and the power for their pumping, while maintaining a minimum mass flux of 0.5 kg m − 2 h − 1 . The optimal operating conditions found in this study could save the total energy consumption by 26.3%.</description><subject>Applied sciences</subject><subject>Chemical engineering</subject><subject>Computational efficiency</subject><subject>Computer simulation</subject><subject>Computing time</subject><subject>DCMD</subject><subject>Direct contact membrane distillation</subject><subject>Dynamical systems</subject><subject>Energy efficiency</subject><subject>Exact sciences and technology</subject><subject>Fluxes</subject><subject>Matlab</subject><subject>Membrane separation (reverse osmosis, dialysis...)</subject><subject>Membranes</subject><subject>Nonlinear dynamics</subject><subject>Optimisation</subject><subject>Optimization</subject><subject>Pollution</subject><subject>Simulation</subject><issn>0011-9164</issn><issn>1873-4464</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKu_wM1sRDdTbx6dTBYupPiCggt14SpkMnckZWZSk6nQf2_qFJeFC5cczsk9fIRcUphRoMXtalZjNO2MQVJApKFHZEJLyXMhCnFMJgCU5ooW4pScxbhKT6Y4n5DPN9dtWjM432emrzO_Hlzn4ij4JqtdQDtk1veDSbvDrgqmx6THwbX7YONDhj2Gr22GTeOsw95uz8lJY9qIF_s9JR-PD--L53z5-vSyuF_mlqtyyBuUVlVzbo1iWM3ntVAlN1BDWVZYAZPC1gpKpgzwmjNrmSo4ghGUWSGR8ym5Hv9dB_-9wTjo1N9i6taj30QtC2DASimS8-agk0opKZ-LApKVj1YbfIwBG70OrjNhqynoHXK90n_I9Q65BpGGptTV_oCJ1rRNImVd_I8yDgCF2BW5G32YuPw4DDr-McORtq69O3jnF-WdmJk</recordid><startdate>20100915</startdate><enddate>20100915</enddate><creator>Bui, V.A.</creator><creator>Vu, L.T.T.</creator><creator>Nguyen, M.H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SU</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>7QH</scope><scope>7ST</scope><scope>7U6</scope><scope>7UA</scope><scope>SOI</scope></search><sort><creationdate>20100915</creationdate><title>Simulation and optimisation of direct contact membrane distillation for energy efficiency</title><author>Bui, V.A. ; Vu, L.T.T. ; Nguyen, M.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-fe7c9b53ca92eb55d4983a0d088beb0274cd90829a03d32cc2963e0a412c47e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Applied sciences</topic><topic>Chemical engineering</topic><topic>Computational efficiency</topic><topic>Computer simulation</topic><topic>Computing time</topic><topic>DCMD</topic><topic>Direct contact membrane distillation</topic><topic>Dynamical systems</topic><topic>Energy efficiency</topic><topic>Exact sciences and technology</topic><topic>Fluxes</topic><topic>Matlab</topic><topic>Membrane separation (reverse osmosis, dialysis...)</topic><topic>Membranes</topic><topic>Nonlinear dynamics</topic><topic>Optimisation</topic><topic>Optimization</topic><topic>Pollution</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bui, V.A.</creatorcontrib><creatorcontrib>Vu, L.T.T.</creatorcontrib><creatorcontrib>Nguyen, M.H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environmental Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Desalination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bui, V.A.</au><au>Vu, L.T.T.</au><au>Nguyen, M.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulation and optimisation of direct contact membrane distillation for energy efficiency</atitle><jtitle>Desalination</jtitle><date>2010-09-15</date><risdate>2010</risdate><volume>259</volume><issue>1</issue><spage>29</spage><epage>37</epage><pages>29-37</pages><issn>0011-9164</issn><eissn>1873-4464</eissn><coden>DSLNAH</coden><abstract>This paper describes the formulation of a computational framework for simulating and optimising DCMD to minimise the consumed energy. A simulation procedure for DCMD was established on the basis of equating heat and mass fluxes through different domains in the process. Steady-state simulations for a wide range of operating conditions were carried out. It was revealed that the highest achievable energy efficiency of DCMD within the tested range was about 49.9%. A double loop optimisation problem was formulated in MATLAB to solve the highly nonlinear equations with unknown outlet and membrane surface conditions to implement the simulation procedure. An additional outer loop was also implemented to accommodate the dynamic condition of a real lab-scale DCMD system concentrating 1.5 kg glucose solution from 30 to 60% w/w. A pseudo-real-time dynamic optimisation was performed to minimise the energy expenses for the DCMD process. This energy accounted for the heat exchanged between the feed and permeate streams within the membrane module and the power for their pumping, while maintaining a minimum mass flux of 0.5 kg m − 2 h − 1 . The optimal operating conditions found in this study could save the total energy consumption by 26.3%.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.desal.2010.04.041</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0011-9164
ispartof Desalination, 2010-09, Vol.259 (1), p.29-37
issn 0011-9164
1873-4464
language eng
recordid cdi_proquest_miscellaneous_760202874
source Elsevier
subjects Applied sciences
Chemical engineering
Computational efficiency
Computer simulation
Computing time
DCMD
Direct contact membrane distillation
Dynamical systems
Energy efficiency
Exact sciences and technology
Fluxes
Matlab
Membrane separation (reverse osmosis, dialysis...)
Membranes
Nonlinear dynamics
Optimisation
Optimization
Pollution
Simulation
title Simulation and optimisation of direct contact membrane distillation for energy efficiency
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T12%3A49%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulation%20and%20optimisation%20of%20direct%20contact%20membrane%20distillation%20for%20energy%20efficiency&rft.jtitle=Desalination&rft.au=Bui,%20V.A.&rft.date=2010-09-15&rft.volume=259&rft.issue=1&rft.spage=29&rft.epage=37&rft.pages=29-37&rft.issn=0011-9164&rft.eissn=1873-4464&rft.coden=DSLNAH&rft_id=info:doi/10.1016/j.desal.2010.04.041&rft_dat=%3Cproquest_cross%3E760202874%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-fe7c9b53ca92eb55d4983a0d088beb0274cd90829a03d32cc2963e0a412c47e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1777135460&rft_id=info:pmid/&rfr_iscdi=true