Loading…

Controlling cellular activity by manipulating silicone surface roughness

Silicone elastomers exhibit a broad range of beneficial properties that are exploited in biomaterials. In some cases, however, problems can arise at silicone elastomer interfaces. With breast implants, for example, the fibrous capsule that forms at the silicone interface can undergo contracture, whi...

Full description

Saved in:
Bibliographic Details
Published in:Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2010-07, Vol.78 (2), p.237-242
Main Authors: Prasad, Babu R., Brook, Michael A., Smith, Terry, Zhao, Shigui, Chen, Yang, Sheardown, Heather, D'souza, Renita, Rochev, Yuri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c498t-74492a1bd7517c23b43b0aa5486ff5ed76ea48aa47c45c2c49a02a539a8c42463
cites cdi_FETCH-LOGICAL-c498t-74492a1bd7517c23b43b0aa5486ff5ed76ea48aa47c45c2c49a02a539a8c42463
container_end_page 242
container_issue 2
container_start_page 237
container_title Colloids and surfaces, B, Biointerfaces
container_volume 78
creator Prasad, Babu R.
Brook, Michael A.
Smith, Terry
Zhao, Shigui
Chen, Yang
Sheardown, Heather
D'souza, Renita
Rochev, Yuri
description Silicone elastomers exhibit a broad range of beneficial properties that are exploited in biomaterials. In some cases, however, problems can arise at silicone elastomer interfaces. With breast implants, for example, the fibrous capsule that forms at the silicone interface can undergo contracture, which can lead to the need for revision surgery. The relationship between surface topography and wound healing – which could impact on the degree of contracture – has not been examined in detail. To address this, we prepared silicone elastomer samples with rms surface roughnesses varying from 88 to 650 nm and examined the growth of 3T3 fibroblasts on these surfaces. The PicoGreen ® assay demonstrated that fibroblast growth decreased with increases in surface roughness. Relatively smooth (∼88 nm) PDMS samples had ca. twice as much fibroblast DNA per unit area than the ‘bumpy’ (∼378 nm) and very rough (∼604 and ∼650 nm) PDMS samples. While the PDMS sample with roughness of ∼650 nm had significantly fewer fibroblasts at 24 h than the TCP control, fibroblasts on the smooth silicone surprisingly reached confluence much more rapidly than on TCP, the gold standard for cell culture. Thus, increasing the surface roughness at the sub-micron scale could be a strategy worthy of consideration to help mitigate fibroblast growth and control fibrous capsule formation on silicone elastomer implants.
doi_str_mv 10.1016/j.colsurfb.2010.03.006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760203853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776510001396</els_id><sourcerecordid>760203853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-74492a1bd7517c23b43b0aa5486ff5ed76ea48aa47c45c2c49a02a539a8c42463</originalsourceid><addsrcrecordid>eNqFkU9LwzAYh4Mobk6_wuhNL51v_jRpb8pQJwy86DmkaTozumYm7WDf3pRtHt0p8PL88subB6EphhkGzB_XM-2a0Pu6nBGIQ6AzAH6BxjgXNGWUi0s0hoKIVAiejdBNCGsAIAyLazQiQDnlAGO0mLu2865pbLtKtGmavlE-UbqzO9vtk3KfbFRrt3HaDUSwjdWuNclQrbRJvOtX360J4RZd1aoJ5u54TtDX68vnfJEuP97e58_LVLMi71LBWEEULiuRYaEJLRktQamM5byuM1MJbhTLlWJCs0yTGFJAVEYLlWtGGKcTdH-4d-vdT29CJzc2DA9XrXF9kIJD3C7P6HmS0oKKCEby4V8SCwGkIHmRRZQfUO1dCN7UcuvtRvm9xCAHM3ItT2bkYEYCldFMDE6PHX25MdVf7KQiAk8HwMTf21njZdDWtNpU1hvdycrZcx2_t6Sixw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770292895</pqid></control><display><type>article</type><title>Controlling cellular activity by manipulating silicone surface roughness</title><source>ScienceDirect Journals</source><creator>Prasad, Babu R. ; Brook, Michael A. ; Smith, Terry ; Zhao, Shigui ; Chen, Yang ; Sheardown, Heather ; D'souza, Renita ; Rochev, Yuri</creator><creatorcontrib>Prasad, Babu R. ; Brook, Michael A. ; Smith, Terry ; Zhao, Shigui ; Chen, Yang ; Sheardown, Heather ; D'souza, Renita ; Rochev, Yuri</creatorcontrib><description>Silicone elastomers exhibit a broad range of beneficial properties that are exploited in biomaterials. In some cases, however, problems can arise at silicone elastomer interfaces. With breast implants, for example, the fibrous capsule that forms at the silicone interface can undergo contracture, which can lead to the need for revision surgery. The relationship between surface topography and wound healing – which could impact on the degree of contracture – has not been examined in detail. To address this, we prepared silicone elastomer samples with rms surface roughnesses varying from 88 to 650 nm and examined the growth of 3T3 fibroblasts on these surfaces. The PicoGreen ® assay demonstrated that fibroblast growth decreased with increases in surface roughness. Relatively smooth (∼88 nm) PDMS samples had ca. twice as much fibroblast DNA per unit area than the ‘bumpy’ (∼378 nm) and very rough (∼604 and ∼650 nm) PDMS samples. While the PDMS sample with roughness of ∼650 nm had significantly fewer fibroblasts at 24 h than the TCP control, fibroblasts on the smooth silicone surprisingly reached confluence much more rapidly than on TCP, the gold standard for cell culture. Thus, increasing the surface roughness at the sub-micron scale could be a strategy worthy of consideration to help mitigate fibroblast growth and control fibrous capsule formation on silicone elastomer implants.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2010.03.006</identifier><identifier>PMID: 20363600</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>3T3 fibroblasts ; Animals ; Biocompatibility ; Biocompatible Materials - chemistry ; Biocompatible Materials - metabolism ; Breast Implants ; Cell Proliferation ; Cellular activity ; Control surfaces ; Dimethylpolysiloxanes - chemistry ; Dimethylpolysiloxanes - metabolism ; Elastomers ; Female ; Fibroblasts ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Humans ; Mice ; Microscopy, Atomic Force ; Microscopy, Electron, Scanning ; NIH 3T3 Cells ; Roughness ; Silicone Elastomers - chemistry ; Silicone Elastomers - metabolism ; Silicone resins ; Silicones ; Silicones - chemistry ; Silicones - metabolism ; Spectroscopy, Fourier Transform Infrared ; Surface Properties ; Surface roughness ; Surface topology ; Surgical implants ; TCP (protocol) ; Time Factors</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2010-07, Vol.78 (2), p.237-242</ispartof><rights>2010 Elsevier B.V.</rights><rights>2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-74492a1bd7517c23b43b0aa5486ff5ed76ea48aa47c45c2c49a02a539a8c42463</citedby><cites>FETCH-LOGICAL-c498t-74492a1bd7517c23b43b0aa5486ff5ed76ea48aa47c45c2c49a02a539a8c42463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20363600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prasad, Babu R.</creatorcontrib><creatorcontrib>Brook, Michael A.</creatorcontrib><creatorcontrib>Smith, Terry</creatorcontrib><creatorcontrib>Zhao, Shigui</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Sheardown, Heather</creatorcontrib><creatorcontrib>D'souza, Renita</creatorcontrib><creatorcontrib>Rochev, Yuri</creatorcontrib><title>Controlling cellular activity by manipulating silicone surface roughness</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>Silicone elastomers exhibit a broad range of beneficial properties that are exploited in biomaterials. In some cases, however, problems can arise at silicone elastomer interfaces. With breast implants, for example, the fibrous capsule that forms at the silicone interface can undergo contracture, which can lead to the need for revision surgery. The relationship between surface topography and wound healing – which could impact on the degree of contracture – has not been examined in detail. To address this, we prepared silicone elastomer samples with rms surface roughnesses varying from 88 to 650 nm and examined the growth of 3T3 fibroblasts on these surfaces. The PicoGreen ® assay demonstrated that fibroblast growth decreased with increases in surface roughness. Relatively smooth (∼88 nm) PDMS samples had ca. twice as much fibroblast DNA per unit area than the ‘bumpy’ (∼378 nm) and very rough (∼604 and ∼650 nm) PDMS samples. While the PDMS sample with roughness of ∼650 nm had significantly fewer fibroblasts at 24 h than the TCP control, fibroblasts on the smooth silicone surprisingly reached confluence much more rapidly than on TCP, the gold standard for cell culture. Thus, increasing the surface roughness at the sub-micron scale could be a strategy worthy of consideration to help mitigate fibroblast growth and control fibrous capsule formation on silicone elastomer implants.</description><subject>3T3 fibroblasts</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - metabolism</subject><subject>Breast Implants</subject><subject>Cell Proliferation</subject><subject>Cellular activity</subject><subject>Control surfaces</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Dimethylpolysiloxanes - metabolism</subject><subject>Elastomers</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Humans</subject><subject>Mice</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron, Scanning</subject><subject>NIH 3T3 Cells</subject><subject>Roughness</subject><subject>Silicone Elastomers - chemistry</subject><subject>Silicone Elastomers - metabolism</subject><subject>Silicone resins</subject><subject>Silicones</subject><subject>Silicones - chemistry</subject><subject>Silicones - metabolism</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surface Properties</subject><subject>Surface roughness</subject><subject>Surface topology</subject><subject>Surgical implants</subject><subject>TCP (protocol)</subject><subject>Time Factors</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LwzAYh4Mobk6_wuhNL51v_jRpb8pQJwy86DmkaTozumYm7WDf3pRtHt0p8PL88subB6EphhkGzB_XM-2a0Pu6nBGIQ6AzAH6BxjgXNGWUi0s0hoKIVAiejdBNCGsAIAyLazQiQDnlAGO0mLu2865pbLtKtGmavlE-UbqzO9vtk3KfbFRrt3HaDUSwjdWuNclQrbRJvOtX360J4RZd1aoJ5u54TtDX68vnfJEuP97e58_LVLMi71LBWEEULiuRYaEJLRktQamM5byuM1MJbhTLlWJCs0yTGFJAVEYLlWtGGKcTdH-4d-vdT29CJzc2DA9XrXF9kIJD3C7P6HmS0oKKCEby4V8SCwGkIHmRRZQfUO1dCN7UcuvtRvm9xCAHM3ItT2bkYEYCldFMDE6PHX25MdVf7KQiAk8HwMTf21njZdDWtNpU1hvdycrZcx2_t6Sixw</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Prasad, Babu R.</creator><creator>Brook, Michael A.</creator><creator>Smith, Terry</creator><creator>Zhao, Shigui</creator><creator>Chen, Yang</creator><creator>Sheardown, Heather</creator><creator>D'souza, Renita</creator><creator>Rochev, Yuri</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100701</creationdate><title>Controlling cellular activity by manipulating silicone surface roughness</title><author>Prasad, Babu R. ; Brook, Michael A. ; Smith, Terry ; Zhao, Shigui ; Chen, Yang ; Sheardown, Heather ; D'souza, Renita ; Rochev, Yuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-74492a1bd7517c23b43b0aa5486ff5ed76ea48aa47c45c2c49a02a539a8c42463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3T3 fibroblasts</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - metabolism</topic><topic>Breast Implants</topic><topic>Cell Proliferation</topic><topic>Cellular activity</topic><topic>Control surfaces</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Dimethylpolysiloxanes - metabolism</topic><topic>Elastomers</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Humans</topic><topic>Mice</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron, Scanning</topic><topic>NIH 3T3 Cells</topic><topic>Roughness</topic><topic>Silicone Elastomers - chemistry</topic><topic>Silicone Elastomers - metabolism</topic><topic>Silicone resins</topic><topic>Silicones</topic><topic>Silicones - chemistry</topic><topic>Silicones - metabolism</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surface Properties</topic><topic>Surface roughness</topic><topic>Surface topology</topic><topic>Surgical implants</topic><topic>TCP (protocol)</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasad, Babu R.</creatorcontrib><creatorcontrib>Brook, Michael A.</creatorcontrib><creatorcontrib>Smith, Terry</creatorcontrib><creatorcontrib>Zhao, Shigui</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Sheardown, Heather</creatorcontrib><creatorcontrib>D'souza, Renita</creatorcontrib><creatorcontrib>Rochev, Yuri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasad, Babu R.</au><au>Brook, Michael A.</au><au>Smith, Terry</au><au>Zhao, Shigui</au><au>Chen, Yang</au><au>Sheardown, Heather</au><au>D'souza, Renita</au><au>Rochev, Yuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling cellular activity by manipulating silicone surface roughness</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>78</volume><issue>2</issue><spage>237</spage><epage>242</epage><pages>237-242</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>Silicone elastomers exhibit a broad range of beneficial properties that are exploited in biomaterials. In some cases, however, problems can arise at silicone elastomer interfaces. With breast implants, for example, the fibrous capsule that forms at the silicone interface can undergo contracture, which can lead to the need for revision surgery. The relationship between surface topography and wound healing – which could impact on the degree of contracture – has not been examined in detail. To address this, we prepared silicone elastomer samples with rms surface roughnesses varying from 88 to 650 nm and examined the growth of 3T3 fibroblasts on these surfaces. The PicoGreen ® assay demonstrated that fibroblast growth decreased with increases in surface roughness. Relatively smooth (∼88 nm) PDMS samples had ca. twice as much fibroblast DNA per unit area than the ‘bumpy’ (∼378 nm) and very rough (∼604 and ∼650 nm) PDMS samples. While the PDMS sample with roughness of ∼650 nm had significantly fewer fibroblasts at 24 h than the TCP control, fibroblasts on the smooth silicone surprisingly reached confluence much more rapidly than on TCP, the gold standard for cell culture. Thus, increasing the surface roughness at the sub-micron scale could be a strategy worthy of consideration to help mitigate fibroblast growth and control fibrous capsule formation on silicone elastomer implants.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>20363600</pmid><doi>10.1016/j.colsurfb.2010.03.006</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0927-7765
ispartof Colloids and surfaces, B, Biointerfaces, 2010-07, Vol.78 (2), p.237-242
issn 0927-7765
1873-4367
language eng
recordid cdi_proquest_miscellaneous_760203853
source ScienceDirect Journals
subjects 3T3 fibroblasts
Animals
Biocompatibility
Biocompatible Materials - chemistry
Biocompatible Materials - metabolism
Breast Implants
Cell Proliferation
Cellular activity
Control surfaces
Dimethylpolysiloxanes - chemistry
Dimethylpolysiloxanes - metabolism
Elastomers
Female
Fibroblasts
Fibroblasts - cytology
Fibroblasts - metabolism
Humans
Mice
Microscopy, Atomic Force
Microscopy, Electron, Scanning
NIH 3T3 Cells
Roughness
Silicone Elastomers - chemistry
Silicone Elastomers - metabolism
Silicone resins
Silicones
Silicones - chemistry
Silicones - metabolism
Spectroscopy, Fourier Transform Infrared
Surface Properties
Surface roughness
Surface topology
Surgical implants
TCP (protocol)
Time Factors
title Controlling cellular activity by manipulating silicone surface roughness
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20cellular%20activity%20by%20manipulating%20silicone%20surface%20roughness&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Prasad,%20Babu%20R.&rft.date=2010-07-01&rft.volume=78&rft.issue=2&rft.spage=237&rft.epage=242&rft.pages=237-242&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2010.03.006&rft_dat=%3Cproquest_cross%3E760203853%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-74492a1bd7517c23b43b0aa5486ff5ed76ea48aa47c45c2c49a02a539a8c42463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770292895&rft_id=info:pmid/20363600&rfr_iscdi=true