Loading…
Controlling cellular activity by manipulating silicone surface roughness
Silicone elastomers exhibit a broad range of beneficial properties that are exploited in biomaterials. In some cases, however, problems can arise at silicone elastomer interfaces. With breast implants, for example, the fibrous capsule that forms at the silicone interface can undergo contracture, whi...
Saved in:
Published in: | Colloids and surfaces, B, Biointerfaces B, Biointerfaces, 2010-07, Vol.78 (2), p.237-242 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c498t-74492a1bd7517c23b43b0aa5486ff5ed76ea48aa47c45c2c49a02a539a8c42463 |
---|---|
cites | cdi_FETCH-LOGICAL-c498t-74492a1bd7517c23b43b0aa5486ff5ed76ea48aa47c45c2c49a02a539a8c42463 |
container_end_page | 242 |
container_issue | 2 |
container_start_page | 237 |
container_title | Colloids and surfaces, B, Biointerfaces |
container_volume | 78 |
creator | Prasad, Babu R. Brook, Michael A. Smith, Terry Zhao, Shigui Chen, Yang Sheardown, Heather D'souza, Renita Rochev, Yuri |
description | Silicone elastomers exhibit a broad range of beneficial properties that are exploited in biomaterials. In some cases, however, problems can arise at silicone elastomer interfaces. With breast implants, for example, the fibrous capsule that forms at the silicone interface can undergo contracture, which can lead to the need for revision surgery. The relationship between surface topography and wound healing – which could impact on the degree of contracture – has not been examined in detail. To address this, we prepared silicone elastomer samples with rms surface roughnesses varying from 88 to 650
nm and examined the growth of 3T3 fibroblasts on these surfaces. The PicoGreen
® assay demonstrated that fibroblast growth decreased with increases in surface roughness. Relatively smooth (∼88
nm) PDMS samples had
ca. twice as much fibroblast DNA per unit area than the ‘bumpy’ (∼378
nm) and very rough (∼604 and ∼650
nm) PDMS samples. While the PDMS sample with roughness of ∼650
nm had significantly fewer fibroblasts at 24
h than the TCP control, fibroblasts on the smooth silicone surprisingly reached confluence much more rapidly than on TCP, the gold standard for cell culture. Thus, increasing the surface roughness at the sub-micron scale could be a strategy worthy of consideration to help mitigate fibroblast growth and control fibrous capsule formation on silicone elastomer implants. |
doi_str_mv | 10.1016/j.colsurfb.2010.03.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760203853</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0927776510001396</els_id><sourcerecordid>760203853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-74492a1bd7517c23b43b0aa5486ff5ed76ea48aa47c45c2c49a02a539a8c42463</originalsourceid><addsrcrecordid>eNqFkU9LwzAYh4Mobk6_wuhNL51v_jRpb8pQJwy86DmkaTozumYm7WDf3pRtHt0p8PL88subB6EphhkGzB_XM-2a0Pu6nBGIQ6AzAH6BxjgXNGWUi0s0hoKIVAiejdBNCGsAIAyLazQiQDnlAGO0mLu2865pbLtKtGmavlE-UbqzO9vtk3KfbFRrt3HaDUSwjdWuNclQrbRJvOtX360J4RZd1aoJ5u54TtDX68vnfJEuP97e58_LVLMi71LBWEEULiuRYaEJLRktQamM5byuM1MJbhTLlWJCs0yTGFJAVEYLlWtGGKcTdH-4d-vdT29CJzc2DA9XrXF9kIJD3C7P6HmS0oKKCEby4V8SCwGkIHmRRZQfUO1dCN7UcuvtRvm9xCAHM3ItT2bkYEYCldFMDE6PHX25MdVf7KQiAk8HwMTf21njZdDWtNpU1hvdycrZcx2_t6Sixw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770292895</pqid></control><display><type>article</type><title>Controlling cellular activity by manipulating silicone surface roughness</title><source>ScienceDirect Journals</source><creator>Prasad, Babu R. ; Brook, Michael A. ; Smith, Terry ; Zhao, Shigui ; Chen, Yang ; Sheardown, Heather ; D'souza, Renita ; Rochev, Yuri</creator><creatorcontrib>Prasad, Babu R. ; Brook, Michael A. ; Smith, Terry ; Zhao, Shigui ; Chen, Yang ; Sheardown, Heather ; D'souza, Renita ; Rochev, Yuri</creatorcontrib><description>Silicone elastomers exhibit a broad range of beneficial properties that are exploited in biomaterials. In some cases, however, problems can arise at silicone elastomer interfaces. With breast implants, for example, the fibrous capsule that forms at the silicone interface can undergo contracture, which can lead to the need for revision surgery. The relationship between surface topography and wound healing – which could impact on the degree of contracture – has not been examined in detail. To address this, we prepared silicone elastomer samples with rms surface roughnesses varying from 88 to 650
nm and examined the growth of 3T3 fibroblasts on these surfaces. The PicoGreen
® assay demonstrated that fibroblast growth decreased with increases in surface roughness. Relatively smooth (∼88
nm) PDMS samples had
ca. twice as much fibroblast DNA per unit area than the ‘bumpy’ (∼378
nm) and very rough (∼604 and ∼650
nm) PDMS samples. While the PDMS sample with roughness of ∼650
nm had significantly fewer fibroblasts at 24
h than the TCP control, fibroblasts on the smooth silicone surprisingly reached confluence much more rapidly than on TCP, the gold standard for cell culture. Thus, increasing the surface roughness at the sub-micron scale could be a strategy worthy of consideration to help mitigate fibroblast growth and control fibrous capsule formation on silicone elastomer implants.</description><identifier>ISSN: 0927-7765</identifier><identifier>EISSN: 1873-4367</identifier><identifier>DOI: 10.1016/j.colsurfb.2010.03.006</identifier><identifier>PMID: 20363600</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>3T3 fibroblasts ; Animals ; Biocompatibility ; Biocompatible Materials - chemistry ; Biocompatible Materials - metabolism ; Breast Implants ; Cell Proliferation ; Cellular activity ; Control surfaces ; Dimethylpolysiloxanes - chemistry ; Dimethylpolysiloxanes - metabolism ; Elastomers ; Female ; Fibroblasts ; Fibroblasts - cytology ; Fibroblasts - metabolism ; Humans ; Mice ; Microscopy, Atomic Force ; Microscopy, Electron, Scanning ; NIH 3T3 Cells ; Roughness ; Silicone Elastomers - chemistry ; Silicone Elastomers - metabolism ; Silicone resins ; Silicones ; Silicones - chemistry ; Silicones - metabolism ; Spectroscopy, Fourier Transform Infrared ; Surface Properties ; Surface roughness ; Surface topology ; Surgical implants ; TCP (protocol) ; Time Factors</subject><ispartof>Colloids and surfaces, B, Biointerfaces, 2010-07, Vol.78 (2), p.237-242</ispartof><rights>2010 Elsevier B.V.</rights><rights>2010 Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-74492a1bd7517c23b43b0aa5486ff5ed76ea48aa47c45c2c49a02a539a8c42463</citedby><cites>FETCH-LOGICAL-c498t-74492a1bd7517c23b43b0aa5486ff5ed76ea48aa47c45c2c49a02a539a8c42463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20363600$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Prasad, Babu R.</creatorcontrib><creatorcontrib>Brook, Michael A.</creatorcontrib><creatorcontrib>Smith, Terry</creatorcontrib><creatorcontrib>Zhao, Shigui</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Sheardown, Heather</creatorcontrib><creatorcontrib>D'souza, Renita</creatorcontrib><creatorcontrib>Rochev, Yuri</creatorcontrib><title>Controlling cellular activity by manipulating silicone surface roughness</title><title>Colloids and surfaces, B, Biointerfaces</title><addtitle>Colloids Surf B Biointerfaces</addtitle><description>Silicone elastomers exhibit a broad range of beneficial properties that are exploited in biomaterials. In some cases, however, problems can arise at silicone elastomer interfaces. With breast implants, for example, the fibrous capsule that forms at the silicone interface can undergo contracture, which can lead to the need for revision surgery. The relationship between surface topography and wound healing – which could impact on the degree of contracture – has not been examined in detail. To address this, we prepared silicone elastomer samples with rms surface roughnesses varying from 88 to 650
nm and examined the growth of 3T3 fibroblasts on these surfaces. The PicoGreen
® assay demonstrated that fibroblast growth decreased with increases in surface roughness. Relatively smooth (∼88
nm) PDMS samples had
ca. twice as much fibroblast DNA per unit area than the ‘bumpy’ (∼378
nm) and very rough (∼604 and ∼650
nm) PDMS samples. While the PDMS sample with roughness of ∼650
nm had significantly fewer fibroblasts at 24
h than the TCP control, fibroblasts on the smooth silicone surprisingly reached confluence much more rapidly than on TCP, the gold standard for cell culture. Thus, increasing the surface roughness at the sub-micron scale could be a strategy worthy of consideration to help mitigate fibroblast growth and control fibrous capsule formation on silicone elastomer implants.</description><subject>3T3 fibroblasts</subject><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biocompatible Materials - metabolism</subject><subject>Breast Implants</subject><subject>Cell Proliferation</subject><subject>Cellular activity</subject><subject>Control surfaces</subject><subject>Dimethylpolysiloxanes - chemistry</subject><subject>Dimethylpolysiloxanes - metabolism</subject><subject>Elastomers</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Fibroblasts - cytology</subject><subject>Fibroblasts - metabolism</subject><subject>Humans</subject><subject>Mice</subject><subject>Microscopy, Atomic Force</subject><subject>Microscopy, Electron, Scanning</subject><subject>NIH 3T3 Cells</subject><subject>Roughness</subject><subject>Silicone Elastomers - chemistry</subject><subject>Silicone Elastomers - metabolism</subject><subject>Silicone resins</subject><subject>Silicones</subject><subject>Silicones - chemistry</subject><subject>Silicones - metabolism</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Surface Properties</subject><subject>Surface roughness</subject><subject>Surface topology</subject><subject>Surgical implants</subject><subject>TCP (protocol)</subject><subject>Time Factors</subject><issn>0927-7765</issn><issn>1873-4367</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkU9LwzAYh4Mobk6_wuhNL51v_jRpb8pQJwy86DmkaTozumYm7WDf3pRtHt0p8PL88subB6EphhkGzB_XM-2a0Pu6nBGIQ6AzAH6BxjgXNGWUi0s0hoKIVAiejdBNCGsAIAyLazQiQDnlAGO0mLu2865pbLtKtGmavlE-UbqzO9vtk3KfbFRrt3HaDUSwjdWuNclQrbRJvOtX360J4RZd1aoJ5u54TtDX68vnfJEuP97e58_LVLMi71LBWEEULiuRYaEJLRktQamM5byuM1MJbhTLlWJCs0yTGFJAVEYLlWtGGKcTdH-4d-vdT29CJzc2DA9XrXF9kIJD3C7P6HmS0oKKCEby4V8SCwGkIHmRRZQfUO1dCN7UcuvtRvm9xCAHM3ItT2bkYEYCldFMDE6PHX25MdVf7KQiAk8HwMTf21njZdDWtNpU1hvdycrZcx2_t6Sixw</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Prasad, Babu R.</creator><creator>Brook, Michael A.</creator><creator>Smith, Terry</creator><creator>Zhao, Shigui</creator><creator>Chen, Yang</creator><creator>Sheardown, Heather</creator><creator>D'souza, Renita</creator><creator>Rochev, Yuri</creator><general>Elsevier B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>7QO</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20100701</creationdate><title>Controlling cellular activity by manipulating silicone surface roughness</title><author>Prasad, Babu R. ; Brook, Michael A. ; Smith, Terry ; Zhao, Shigui ; Chen, Yang ; Sheardown, Heather ; D'souza, Renita ; Rochev, Yuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-74492a1bd7517c23b43b0aa5486ff5ed76ea48aa47c45c2c49a02a539a8c42463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3T3 fibroblasts</topic><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biocompatible Materials - metabolism</topic><topic>Breast Implants</topic><topic>Cell Proliferation</topic><topic>Cellular activity</topic><topic>Control surfaces</topic><topic>Dimethylpolysiloxanes - chemistry</topic><topic>Dimethylpolysiloxanes - metabolism</topic><topic>Elastomers</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Fibroblasts - cytology</topic><topic>Fibroblasts - metabolism</topic><topic>Humans</topic><topic>Mice</topic><topic>Microscopy, Atomic Force</topic><topic>Microscopy, Electron, Scanning</topic><topic>NIH 3T3 Cells</topic><topic>Roughness</topic><topic>Silicone Elastomers - chemistry</topic><topic>Silicone Elastomers - metabolism</topic><topic>Silicone resins</topic><topic>Silicones</topic><topic>Silicones - chemistry</topic><topic>Silicones - metabolism</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Surface Properties</topic><topic>Surface roughness</topic><topic>Surface topology</topic><topic>Surgical implants</topic><topic>TCP (protocol)</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prasad, Babu R.</creatorcontrib><creatorcontrib>Brook, Michael A.</creatorcontrib><creatorcontrib>Smith, Terry</creatorcontrib><creatorcontrib>Zhao, Shigui</creatorcontrib><creatorcontrib>Chen, Yang</creatorcontrib><creatorcontrib>Sheardown, Heather</creatorcontrib><creatorcontrib>D'souza, Renita</creatorcontrib><creatorcontrib>Rochev, Yuri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prasad, Babu R.</au><au>Brook, Michael A.</au><au>Smith, Terry</au><au>Zhao, Shigui</au><au>Chen, Yang</au><au>Sheardown, Heather</au><au>D'souza, Renita</au><au>Rochev, Yuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling cellular activity by manipulating silicone surface roughness</atitle><jtitle>Colloids and surfaces, B, Biointerfaces</jtitle><addtitle>Colloids Surf B Biointerfaces</addtitle><date>2010-07-01</date><risdate>2010</risdate><volume>78</volume><issue>2</issue><spage>237</spage><epage>242</epage><pages>237-242</pages><issn>0927-7765</issn><eissn>1873-4367</eissn><abstract>Silicone elastomers exhibit a broad range of beneficial properties that are exploited in biomaterials. In some cases, however, problems can arise at silicone elastomer interfaces. With breast implants, for example, the fibrous capsule that forms at the silicone interface can undergo contracture, which can lead to the need for revision surgery. The relationship between surface topography and wound healing – which could impact on the degree of contracture – has not been examined in detail. To address this, we prepared silicone elastomer samples with rms surface roughnesses varying from 88 to 650
nm and examined the growth of 3T3 fibroblasts on these surfaces. The PicoGreen
® assay demonstrated that fibroblast growth decreased with increases in surface roughness. Relatively smooth (∼88
nm) PDMS samples had
ca. twice as much fibroblast DNA per unit area than the ‘bumpy’ (∼378
nm) and very rough (∼604 and ∼650
nm) PDMS samples. While the PDMS sample with roughness of ∼650
nm had significantly fewer fibroblasts at 24
h than the TCP control, fibroblasts on the smooth silicone surprisingly reached confluence much more rapidly than on TCP, the gold standard for cell culture. Thus, increasing the surface roughness at the sub-micron scale could be a strategy worthy of consideration to help mitigate fibroblast growth and control fibrous capsule formation on silicone elastomer implants.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>20363600</pmid><doi>10.1016/j.colsurfb.2010.03.006</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7765 |
ispartof | Colloids and surfaces, B, Biointerfaces, 2010-07, Vol.78 (2), p.237-242 |
issn | 0927-7765 1873-4367 |
language | eng |
recordid | cdi_proquest_miscellaneous_760203853 |
source | ScienceDirect Journals |
subjects | 3T3 fibroblasts Animals Biocompatibility Biocompatible Materials - chemistry Biocompatible Materials - metabolism Breast Implants Cell Proliferation Cellular activity Control surfaces Dimethylpolysiloxanes - chemistry Dimethylpolysiloxanes - metabolism Elastomers Female Fibroblasts Fibroblasts - cytology Fibroblasts - metabolism Humans Mice Microscopy, Atomic Force Microscopy, Electron, Scanning NIH 3T3 Cells Roughness Silicone Elastomers - chemistry Silicone Elastomers - metabolism Silicone resins Silicones Silicones - chemistry Silicones - metabolism Spectroscopy, Fourier Transform Infrared Surface Properties Surface roughness Surface topology Surgical implants TCP (protocol) Time Factors |
title | Controlling cellular activity by manipulating silicone surface roughness |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T21%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20cellular%20activity%20by%20manipulating%20silicone%20surface%20roughness&rft.jtitle=Colloids%20and%20surfaces,%20B,%20Biointerfaces&rft.au=Prasad,%20Babu%20R.&rft.date=2010-07-01&rft.volume=78&rft.issue=2&rft.spage=237&rft.epage=242&rft.pages=237-242&rft.issn=0927-7765&rft.eissn=1873-4367&rft_id=info:doi/10.1016/j.colsurfb.2010.03.006&rft_dat=%3Cproquest_cross%3E760203853%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c498t-74492a1bd7517c23b43b0aa5486ff5ed76ea48aa47c45c2c49a02a539a8c42463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770292895&rft_id=info:pmid/20363600&rfr_iscdi=true |