Loading…
Mechanism and kinetics of lithium vapor capture in a high-temperature packed bed of kaolinite
This study investigated the characteristics of high-temperature lithium vapor-capturing reaction in a packed bed of calcined kaolin particles. The packed-bed sorption experiments were carried in the a temperature range of 700–900 °C. The high-temperature reaction between LiCl vapor and calcined kaol...
Saved in:
Published in: | Applied surface science 2010-06, Vol.256 (17), p.5176-5181 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c368t-50cb751bcf08d6d0d0f82e4b3b81dd521b630fded2753fdbb133038e27efc1bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c368t-50cb751bcf08d6d0d0f82e4b3b81dd521b630fded2753fdbb133038e27efc1bc3 |
container_end_page | 5181 |
container_issue | 17 |
container_start_page | 5176 |
container_title | Applied surface science |
container_volume | 256 |
creator | Yang, H.-C. Eun, H.-C. Cho, Y.-Z. Lee, H.-S. |
description | This study investigated the characteristics of high-temperature lithium vapor-capturing reaction in a packed bed of calcined kaolin particles. The packed-bed sorption experiments were carried in the a temperature range of 700–900
°C. The high-temperature reaction between LiCl vapor and calcined kaolin sorbent generated lithium aluminum silicate (Li
2O·Al
2O
3·2SiO
2). An increase in kaolin bed temperature results in an increase in lithium-capturing rate, but it has no effect on the maximum lithium uptake. The resistance of LiCl vapor diffusion into the pores of calcined kaolin particles was negligible, and the chemical reaction at the kaolin surface controlled the overall sorption reaction rates by up to 60% of metakaolinite conversion. The order of the reaction between metakaolinite and LiCl vapor was determined as 1.94 and its activation energy was estimated as 7.95
kcal/mol according to the Arrhenius relationship. |
doi_str_mv | 10.1016/j.apsusc.2009.12.089 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760208397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016943320901811X</els_id><sourcerecordid>760208397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-50cb751bcf08d6d0d0f82e4b3b81dd521b630fded2753fdbb133038e27efc1bc3</originalsourceid><addsrcrecordid>eNp9kMtLAzEQxoMoWKv_gYdcxNOueewjvQhSfEHFix4lZJOJm3ZfJrsF_3tTWzx6GAZmft98zIfQJSUpJbS4WadqCFPQKSNkkVKWErE4QjMqSp7kuciO0SxiiyTjnJ2isxDWhFAWtzP08QK6Vp0LLVadwRvXweh0wL3FjRtrN7V4q4beY62GcfKAXYcVrt1nnYzQDuDV73RQegMGV7GicqP6xnVuhHN0YlUT4OLQ5-j94f5t-ZSsXh-fl3erRPNCjElOdFXmtNKWCFMYYogVDLKKV4IakzNaFZxYA4aVObemqijnhAtgJVgdZXyOrvd3B99_TRBG2bqgoWlUB_0UZFkQRgRflJHM9qT2fQgerBy8a5X_lpTIXZhyLfdhyl2YkjIZw4yyq4OBClo11qtOu_CnZUxkJWUscrd7DuK3WwdeBu2g02CcBz1K07v_jX4AaFON_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760208397</pqid></control><display><type>article</type><title>Mechanism and kinetics of lithium vapor capture in a high-temperature packed bed of kaolinite</title><source>ScienceDirect Journals</source><creator>Yang, H.-C. ; Eun, H.-C. ; Cho, Y.-Z. ; Lee, H.-S.</creator><creatorcontrib>Yang, H.-C. ; Eun, H.-C. ; Cho, Y.-Z. ; Lee, H.-S.</creatorcontrib><description>This study investigated the characteristics of high-temperature lithium vapor-capturing reaction in a packed bed of calcined kaolin particles. The packed-bed sorption experiments were carried in the a temperature range of 700–900
°C. The high-temperature reaction between LiCl vapor and calcined kaolin sorbent generated lithium aluminum silicate (Li
2O·Al
2O
3·2SiO
2). An increase in kaolin bed temperature results in an increase in lithium-capturing rate, but it has no effect on the maximum lithium uptake. The resistance of LiCl vapor diffusion into the pores of calcined kaolin particles was negligible, and the chemical reaction at the kaolin surface controlled the overall sorption reaction rates by up to 60% of metakaolinite conversion. The order of the reaction between metakaolinite and LiCl vapor was determined as 1.94 and its activation energy was estimated as 7.95
kcal/mol according to the Arrhenius relationship.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2009.12.089</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical reactions ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Conversion ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; High temperature ; Kaolin ; Kaolinite ; Lithium ; Lithium aluminum silicates ; Physics ; Roasting ; Sorption ; Surface chemistry ; Uptakes ; Volatile metal capture</subject><ispartof>Applied surface science, 2010-06, Vol.256 (17), p.5176-5181</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-50cb751bcf08d6d0d0f82e4b3b81dd521b630fded2753fdbb133038e27efc1bc3</citedby><cites>FETCH-LOGICAL-c368t-50cb751bcf08d6d0d0f82e4b3b81dd521b630fded2753fdbb133038e27efc1bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22847122$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, H.-C.</creatorcontrib><creatorcontrib>Eun, H.-C.</creatorcontrib><creatorcontrib>Cho, Y.-Z.</creatorcontrib><creatorcontrib>Lee, H.-S.</creatorcontrib><title>Mechanism and kinetics of lithium vapor capture in a high-temperature packed bed of kaolinite</title><title>Applied surface science</title><description>This study investigated the characteristics of high-temperature lithium vapor-capturing reaction in a packed bed of calcined kaolin particles. The packed-bed sorption experiments were carried in the a temperature range of 700–900
°C. The high-temperature reaction between LiCl vapor and calcined kaolin sorbent generated lithium aluminum silicate (Li
2O·Al
2O
3·2SiO
2). An increase in kaolin bed temperature results in an increase in lithium-capturing rate, but it has no effect on the maximum lithium uptake. The resistance of LiCl vapor diffusion into the pores of calcined kaolin particles was negligible, and the chemical reaction at the kaolin surface controlled the overall sorption reaction rates by up to 60% of metakaolinite conversion. The order of the reaction between metakaolinite and LiCl vapor was determined as 1.94 and its activation energy was estimated as 7.95
kcal/mol according to the Arrhenius relationship.</description><subject>Chemical reactions</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Conversion</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>High temperature</subject><subject>Kaolin</subject><subject>Kaolinite</subject><subject>Lithium</subject><subject>Lithium aluminum silicates</subject><subject>Physics</subject><subject>Roasting</subject><subject>Sorption</subject><subject>Surface chemistry</subject><subject>Uptakes</subject><subject>Volatile metal capture</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLAzEQxoMoWKv_gYdcxNOueewjvQhSfEHFix4lZJOJm3ZfJrsF_3tTWzx6GAZmft98zIfQJSUpJbS4WadqCFPQKSNkkVKWErE4QjMqSp7kuciO0SxiiyTjnJ2isxDWhFAWtzP08QK6Vp0LLVadwRvXweh0wL3FjRtrN7V4q4beY62GcfKAXYcVrt1nnYzQDuDV73RQegMGV7GicqP6xnVuhHN0YlUT4OLQ5-j94f5t-ZSsXh-fl3erRPNCjElOdFXmtNKWCFMYYogVDLKKV4IakzNaFZxYA4aVObemqijnhAtgJVgdZXyOrvd3B99_TRBG2bqgoWlUB_0UZFkQRgRflJHM9qT2fQgerBy8a5X_lpTIXZhyLfdhyl2YkjIZw4yyq4OBClo11qtOu_CnZUxkJWUscrd7DuK3WwdeBu2g02CcBz1K07v_jX4AaFON_A</recordid><startdate>20100615</startdate><enddate>20100615</enddate><creator>Yang, H.-C.</creator><creator>Eun, H.-C.</creator><creator>Cho, Y.-Z.</creator><creator>Lee, H.-S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100615</creationdate><title>Mechanism and kinetics of lithium vapor capture in a high-temperature packed bed of kaolinite</title><author>Yang, H.-C. ; Eun, H.-C. ; Cho, Y.-Z. ; Lee, H.-S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-50cb751bcf08d6d0d0f82e4b3b81dd521b630fded2753fdbb133038e27efc1bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemical reactions</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Conversion</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>High temperature</topic><topic>Kaolin</topic><topic>Kaolinite</topic><topic>Lithium</topic><topic>Lithium aluminum silicates</topic><topic>Physics</topic><topic>Roasting</topic><topic>Sorption</topic><topic>Surface chemistry</topic><topic>Uptakes</topic><topic>Volatile metal capture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, H.-C.</creatorcontrib><creatorcontrib>Eun, H.-C.</creatorcontrib><creatorcontrib>Cho, Y.-Z.</creatorcontrib><creatorcontrib>Lee, H.-S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, H.-C.</au><au>Eun, H.-C.</au><au>Cho, Y.-Z.</au><au>Lee, H.-S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism and kinetics of lithium vapor capture in a high-temperature packed bed of kaolinite</atitle><jtitle>Applied surface science</jtitle><date>2010-06-15</date><risdate>2010</risdate><volume>256</volume><issue>17</issue><spage>5176</spage><epage>5181</epage><pages>5176-5181</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>This study investigated the characteristics of high-temperature lithium vapor-capturing reaction in a packed bed of calcined kaolin particles. The packed-bed sorption experiments were carried in the a temperature range of 700–900
°C. The high-temperature reaction between LiCl vapor and calcined kaolin sorbent generated lithium aluminum silicate (Li
2O·Al
2O
3·2SiO
2). An increase in kaolin bed temperature results in an increase in lithium-capturing rate, but it has no effect on the maximum lithium uptake. The resistance of LiCl vapor diffusion into the pores of calcined kaolin particles was negligible, and the chemical reaction at the kaolin surface controlled the overall sorption reaction rates by up to 60% of metakaolinite conversion. The order of the reaction between metakaolinite and LiCl vapor was determined as 1.94 and its activation energy was estimated as 7.95
kcal/mol according to the Arrhenius relationship.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2009.12.089</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0169-4332 |
ispartof | Applied surface science, 2010-06, Vol.256 (17), p.5176-5181 |
issn | 0169-4332 1873-5584 |
language | eng |
recordid | cdi_proquest_miscellaneous_760208397 |
source | ScienceDirect Journals |
subjects | Chemical reactions Condensed matter: electronic structure, electrical, magnetic, and optical properties Condensed matter: structure, mechanical and thermal properties Conversion Cross-disciplinary physics: materials science rheology Exact sciences and technology High temperature Kaolin Kaolinite Lithium Lithium aluminum silicates Physics Roasting Sorption Surface chemistry Uptakes Volatile metal capture |
title | Mechanism and kinetics of lithium vapor capture in a high-temperature packed bed of kaolinite |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A43%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20and%20kinetics%20of%20lithium%20vapor%20capture%20in%20a%20high-temperature%20packed%20bed%20of%20kaolinite&rft.jtitle=Applied%20surface%20science&rft.au=Yang,%20H.-C.&rft.date=2010-06-15&rft.volume=256&rft.issue=17&rft.spage=5176&rft.epage=5181&rft.pages=5176-5181&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2009.12.089&rft_dat=%3Cproquest_cross%3E760208397%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-50cb751bcf08d6d0d0f82e4b3b81dd521b630fded2753fdbb133038e27efc1bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=760208397&rft_id=info:pmid/&rfr_iscdi=true |