Loading…

Mechanism and kinetics of lithium vapor capture in a high-temperature packed bed of kaolinite

This study investigated the characteristics of high-temperature lithium vapor-capturing reaction in a packed bed of calcined kaolin particles. The packed-bed sorption experiments were carried in the a temperature range of 700–900 °C. The high-temperature reaction between LiCl vapor and calcined kaol...

Full description

Saved in:
Bibliographic Details
Published in:Applied surface science 2010-06, Vol.256 (17), p.5176-5181
Main Authors: Yang, H.-C., Eun, H.-C., Cho, Y.-Z., Lee, H.-S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c368t-50cb751bcf08d6d0d0f82e4b3b81dd521b630fded2753fdbb133038e27efc1bc3
cites cdi_FETCH-LOGICAL-c368t-50cb751bcf08d6d0d0f82e4b3b81dd521b630fded2753fdbb133038e27efc1bc3
container_end_page 5181
container_issue 17
container_start_page 5176
container_title Applied surface science
container_volume 256
creator Yang, H.-C.
Eun, H.-C.
Cho, Y.-Z.
Lee, H.-S.
description This study investigated the characteristics of high-temperature lithium vapor-capturing reaction in a packed bed of calcined kaolin particles. The packed-bed sorption experiments were carried in the a temperature range of 700–900 °C. The high-temperature reaction between LiCl vapor and calcined kaolin sorbent generated lithium aluminum silicate (Li 2O·Al 2O 3·2SiO 2). An increase in kaolin bed temperature results in an increase in lithium-capturing rate, but it has no effect on the maximum lithium uptake. The resistance of LiCl vapor diffusion into the pores of calcined kaolin particles was negligible, and the chemical reaction at the kaolin surface controlled the overall sorption reaction rates by up to 60% of metakaolinite conversion. The order of the reaction between metakaolinite and LiCl vapor was determined as 1.94 and its activation energy was estimated as 7.95 kcal/mol according to the Arrhenius relationship.
doi_str_mv 10.1016/j.apsusc.2009.12.089
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760208397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S016943320901811X</els_id><sourcerecordid>760208397</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-50cb751bcf08d6d0d0f82e4b3b81dd521b630fded2753fdbb133038e27efc1bc3</originalsourceid><addsrcrecordid>eNp9kMtLAzEQxoMoWKv_gYdcxNOueewjvQhSfEHFix4lZJOJm3ZfJrsF_3tTWzx6GAZmft98zIfQJSUpJbS4WadqCFPQKSNkkVKWErE4QjMqSp7kuciO0SxiiyTjnJ2isxDWhFAWtzP08QK6Vp0LLVadwRvXweh0wL3FjRtrN7V4q4beY62GcfKAXYcVrt1nnYzQDuDV73RQegMGV7GicqP6xnVuhHN0YlUT4OLQ5-j94f5t-ZSsXh-fl3erRPNCjElOdFXmtNKWCFMYYogVDLKKV4IakzNaFZxYA4aVObemqijnhAtgJVgdZXyOrvd3B99_TRBG2bqgoWlUB_0UZFkQRgRflJHM9qT2fQgerBy8a5X_lpTIXZhyLfdhyl2YkjIZw4yyq4OBClo11qtOu_CnZUxkJWUscrd7DuK3WwdeBu2g02CcBz1K07v_jX4AaFON_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760208397</pqid></control><display><type>article</type><title>Mechanism and kinetics of lithium vapor capture in a high-temperature packed bed of kaolinite</title><source>ScienceDirect Journals</source><creator>Yang, H.-C. ; Eun, H.-C. ; Cho, Y.-Z. ; Lee, H.-S.</creator><creatorcontrib>Yang, H.-C. ; Eun, H.-C. ; Cho, Y.-Z. ; Lee, H.-S.</creatorcontrib><description>This study investigated the characteristics of high-temperature lithium vapor-capturing reaction in a packed bed of calcined kaolin particles. The packed-bed sorption experiments were carried in the a temperature range of 700–900 °C. The high-temperature reaction between LiCl vapor and calcined kaolin sorbent generated lithium aluminum silicate (Li 2O·Al 2O 3·2SiO 2). An increase in kaolin bed temperature results in an increase in lithium-capturing rate, but it has no effect on the maximum lithium uptake. The resistance of LiCl vapor diffusion into the pores of calcined kaolin particles was negligible, and the chemical reaction at the kaolin surface controlled the overall sorption reaction rates by up to 60% of metakaolinite conversion. The order of the reaction between metakaolinite and LiCl vapor was determined as 1.94 and its activation energy was estimated as 7.95 kcal/mol according to the Arrhenius relationship.</description><identifier>ISSN: 0169-4332</identifier><identifier>EISSN: 1873-5584</identifier><identifier>DOI: 10.1016/j.apsusc.2009.12.089</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Chemical reactions ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Conversion ; Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; High temperature ; Kaolin ; Kaolinite ; Lithium ; Lithium aluminum silicates ; Physics ; Roasting ; Sorption ; Surface chemistry ; Uptakes ; Volatile metal capture</subject><ispartof>Applied surface science, 2010-06, Vol.256 (17), p.5176-5181</ispartof><rights>2010 Elsevier B.V.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-50cb751bcf08d6d0d0f82e4b3b81dd521b630fded2753fdbb133038e27efc1bc3</citedby><cites>FETCH-LOGICAL-c368t-50cb751bcf08d6d0d0f82e4b3b81dd521b630fded2753fdbb133038e27efc1bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22847122$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, H.-C.</creatorcontrib><creatorcontrib>Eun, H.-C.</creatorcontrib><creatorcontrib>Cho, Y.-Z.</creatorcontrib><creatorcontrib>Lee, H.-S.</creatorcontrib><title>Mechanism and kinetics of lithium vapor capture in a high-temperature packed bed of kaolinite</title><title>Applied surface science</title><description>This study investigated the characteristics of high-temperature lithium vapor-capturing reaction in a packed bed of calcined kaolin particles. The packed-bed sorption experiments were carried in the a temperature range of 700–900 °C. The high-temperature reaction between LiCl vapor and calcined kaolin sorbent generated lithium aluminum silicate (Li 2O·Al 2O 3·2SiO 2). An increase in kaolin bed temperature results in an increase in lithium-capturing rate, but it has no effect on the maximum lithium uptake. The resistance of LiCl vapor diffusion into the pores of calcined kaolin particles was negligible, and the chemical reaction at the kaolin surface controlled the overall sorption reaction rates by up to 60% of metakaolinite conversion. The order of the reaction between metakaolinite and LiCl vapor was determined as 1.94 and its activation energy was estimated as 7.95 kcal/mol according to the Arrhenius relationship.</description><subject>Chemical reactions</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Conversion</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>High temperature</subject><subject>Kaolin</subject><subject>Kaolinite</subject><subject>Lithium</subject><subject>Lithium aluminum silicates</subject><subject>Physics</subject><subject>Roasting</subject><subject>Sorption</subject><subject>Surface chemistry</subject><subject>Uptakes</subject><subject>Volatile metal capture</subject><issn>0169-4332</issn><issn>1873-5584</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kMtLAzEQxoMoWKv_gYdcxNOueewjvQhSfEHFix4lZJOJm3ZfJrsF_3tTWzx6GAZmft98zIfQJSUpJbS4WadqCFPQKSNkkVKWErE4QjMqSp7kuciO0SxiiyTjnJ2isxDWhFAWtzP08QK6Vp0LLVadwRvXweh0wL3FjRtrN7V4q4beY62GcfKAXYcVrt1nnYzQDuDV73RQegMGV7GicqP6xnVuhHN0YlUT4OLQ5-j94f5t-ZSsXh-fl3erRPNCjElOdFXmtNKWCFMYYogVDLKKV4IakzNaFZxYA4aVObemqijnhAtgJVgdZXyOrvd3B99_TRBG2bqgoWlUB_0UZFkQRgRflJHM9qT2fQgerBy8a5X_lpTIXZhyLfdhyl2YkjIZw4yyq4OBClo11qtOu_CnZUxkJWUscrd7DuK3WwdeBu2g02CcBz1K07v_jX4AaFON_A</recordid><startdate>20100615</startdate><enddate>20100615</enddate><creator>Yang, H.-C.</creator><creator>Eun, H.-C.</creator><creator>Cho, Y.-Z.</creator><creator>Lee, H.-S.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100615</creationdate><title>Mechanism and kinetics of lithium vapor capture in a high-temperature packed bed of kaolinite</title><author>Yang, H.-C. ; Eun, H.-C. ; Cho, Y.-Z. ; Lee, H.-S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-50cb751bcf08d6d0d0f82e4b3b81dd521b630fded2753fdbb133038e27efc1bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chemical reactions</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Conversion</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>High temperature</topic><topic>Kaolin</topic><topic>Kaolinite</topic><topic>Lithium</topic><topic>Lithium aluminum silicates</topic><topic>Physics</topic><topic>Roasting</topic><topic>Sorption</topic><topic>Surface chemistry</topic><topic>Uptakes</topic><topic>Volatile metal capture</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, H.-C.</creatorcontrib><creatorcontrib>Eun, H.-C.</creatorcontrib><creatorcontrib>Cho, Y.-Z.</creatorcontrib><creatorcontrib>Lee, H.-S.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied surface science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, H.-C.</au><au>Eun, H.-C.</au><au>Cho, Y.-Z.</au><au>Lee, H.-S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism and kinetics of lithium vapor capture in a high-temperature packed bed of kaolinite</atitle><jtitle>Applied surface science</jtitle><date>2010-06-15</date><risdate>2010</risdate><volume>256</volume><issue>17</issue><spage>5176</spage><epage>5181</epage><pages>5176-5181</pages><issn>0169-4332</issn><eissn>1873-5584</eissn><abstract>This study investigated the characteristics of high-temperature lithium vapor-capturing reaction in a packed bed of calcined kaolin particles. The packed-bed sorption experiments were carried in the a temperature range of 700–900 °C. The high-temperature reaction between LiCl vapor and calcined kaolin sorbent generated lithium aluminum silicate (Li 2O·Al 2O 3·2SiO 2). An increase in kaolin bed temperature results in an increase in lithium-capturing rate, but it has no effect on the maximum lithium uptake. The resistance of LiCl vapor diffusion into the pores of calcined kaolin particles was negligible, and the chemical reaction at the kaolin surface controlled the overall sorption reaction rates by up to 60% of metakaolinite conversion. The order of the reaction between metakaolinite and LiCl vapor was determined as 1.94 and its activation energy was estimated as 7.95 kcal/mol according to the Arrhenius relationship.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.apsusc.2009.12.089</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0169-4332
ispartof Applied surface science, 2010-06, Vol.256 (17), p.5176-5181
issn 0169-4332
1873-5584
language eng
recordid cdi_proquest_miscellaneous_760208397
source ScienceDirect Journals
subjects Chemical reactions
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Conversion
Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
High temperature
Kaolin
Kaolinite
Lithium
Lithium aluminum silicates
Physics
Roasting
Sorption
Surface chemistry
Uptakes
Volatile metal capture
title Mechanism and kinetics of lithium vapor capture in a high-temperature packed bed of kaolinite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T06%3A43%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20and%20kinetics%20of%20lithium%20vapor%20capture%20in%20a%20high-temperature%20packed%20bed%20of%20kaolinite&rft.jtitle=Applied%20surface%20science&rft.au=Yang,%20H.-C.&rft.date=2010-06-15&rft.volume=256&rft.issue=17&rft.spage=5176&rft.epage=5181&rft.pages=5176-5181&rft.issn=0169-4332&rft.eissn=1873-5584&rft_id=info:doi/10.1016/j.apsusc.2009.12.089&rft_dat=%3Cproquest_cross%3E760208397%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c368t-50cb751bcf08d6d0d0f82e4b3b81dd521b630fded2753fdbb133038e27efc1bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=760208397&rft_id=info:pmid/&rfr_iscdi=true