Loading…

On the foundations of parameter estimation for generalized partial linear models with B-splines and continuous optimization

Generalized linear models are widely used in statistical techniques. As an extension, generalized partial linear models utilize semiparametric methods and augment the usual parametric terms with a single nonparametric component of a continuous covariate. In this paper, after a short introduction, we...

Full description

Saved in:
Bibliographic Details
Published in:Computers & mathematics with applications (1987) 2010-07, Vol.60 (1), p.134-143
Main Authors: Taylan, Pakize, Weber, Gerhard-Wilhelm, Liu, Lian, Yerlikaya-Özkurt, Fatma
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c380t-3afcf5fa51a5d0bc965abec147c816b73132447199142faa2709a8c414dea323
cites cdi_FETCH-LOGICAL-c380t-3afcf5fa51a5d0bc965abec147c816b73132447199142faa2709a8c414dea323
container_end_page 143
container_issue 1
container_start_page 134
container_title Computers & mathematics with applications (1987)
container_volume 60
creator Taylan, Pakize
Weber, Gerhard-Wilhelm
Liu, Lian
Yerlikaya-Özkurt, Fatma
description Generalized linear models are widely used in statistical techniques. As an extension, generalized partial linear models utilize semiparametric methods and augment the usual parametric terms with a single nonparametric component of a continuous covariate. In this paper, after a short introduction, we present our model in the generalized additive context with a focus on the penalized maximum likelihood and the penalized iteratively reweighted least squares (P-IRLS) problem based on B-splines, which is attractive for nonparametric components. Then, we approach solving the P-IRLS problem using continuous optimization techniques. They have come to constitute an important complementary approach, alternative to the penalty methods, with flexibility for choosing the penalty parameter adaptively. In particular, we model and treat the constrained P-IRLS problem by using the elegant framework of conic quadratic programming. The method is illustrated using a small numerical example.
doi_str_mv 10.1016/j.camwa.2010.04.040
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760210396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122110003111</els_id><sourcerecordid>760210396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-3afcf5fa51a5d0bc965abec147c816b73132447199142faa2709a8c414dea323</originalsourceid><addsrcrecordid>eNp9UE1rGzEQFaGFuEl_QS-69bTO6MP7ccihDW0TMPiSuxhrZxOZXWkjyTV1_nxlu-fCg4GZ9x7zHmNfBCwFiPput7Q4HXApoWxAF8AVW4i2UVVT1-0HtoC2ayshpbhmn1LaAYBWEhbsfeN5fiU-hL3vMbvgEw8DnzHiRJkip5TddD4UTuQv5Cni6I7Un0jZ4chH5wkjn0JPY-IHl1_59yrNp3Xi6Htug8_O78O-eM_Fzh3Phrfs44Bjos__5g17_vnj-eGxWm9-PT18W1dWtZArhYMdVgOuBK562NquXuGWrNCNbUW9bZRQUutGdJ3QckCUDXTYWi10T6ikumFfL7ZzDG_7ksdMLlkaR_RUXjJNDVKA6urCVBemjSGlSIOZYwkf_xgB5lS02Zlz0eZUtAFdAEV1f1GV9PTbUTTJOvKWehfJZtMH91_9X40JitA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760210396</pqid></control><display><type>article</type><title>On the foundations of parameter estimation for generalized partial linear models with B-splines and continuous optimization</title><source>Elsevier</source><creator>Taylan, Pakize ; Weber, Gerhard-Wilhelm ; Liu, Lian ; Yerlikaya-Özkurt, Fatma</creator><creatorcontrib>Taylan, Pakize ; Weber, Gerhard-Wilhelm ; Liu, Lian ; Yerlikaya-Özkurt, Fatma</creatorcontrib><description>Generalized linear models are widely used in statistical techniques. As an extension, generalized partial linear models utilize semiparametric methods and augment the usual parametric terms with a single nonparametric component of a continuous covariate. In this paper, after a short introduction, we present our model in the generalized additive context with a focus on the penalized maximum likelihood and the penalized iteratively reweighted least squares (P-IRLS) problem based on B-splines, which is attractive for nonparametric components. Then, we approach solving the P-IRLS problem using continuous optimization techniques. They have come to constitute an important complementary approach, alternative to the penalty methods, with flexibility for choosing the penalty parameter adaptively. In particular, we model and treat the constrained P-IRLS problem by using the elegant framework of conic quadratic programming. The method is illustrated using a small numerical example.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2010.04.040</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Additives ; CMARS ; Computer simulation ; Conic quadratic programming ; Conics ; Flexibility ; Foundations ; Generalized partial linear models ; Least squares method ; Mathematical models ; Maximum likelihood ; Optimization ; Penalty methods ; Quadratic programming</subject><ispartof>Computers &amp; mathematics with applications (1987), 2010-07, Vol.60 (1), p.134-143</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-3afcf5fa51a5d0bc965abec147c816b73132447199142faa2709a8c414dea323</citedby><cites>FETCH-LOGICAL-c380t-3afcf5fa51a5d0bc965abec147c816b73132447199142faa2709a8c414dea323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Taylan, Pakize</creatorcontrib><creatorcontrib>Weber, Gerhard-Wilhelm</creatorcontrib><creatorcontrib>Liu, Lian</creatorcontrib><creatorcontrib>Yerlikaya-Özkurt, Fatma</creatorcontrib><title>On the foundations of parameter estimation for generalized partial linear models with B-splines and continuous optimization</title><title>Computers &amp; mathematics with applications (1987)</title><description>Generalized linear models are widely used in statistical techniques. As an extension, generalized partial linear models utilize semiparametric methods and augment the usual parametric terms with a single nonparametric component of a continuous covariate. In this paper, after a short introduction, we present our model in the generalized additive context with a focus on the penalized maximum likelihood and the penalized iteratively reweighted least squares (P-IRLS) problem based on B-splines, which is attractive for nonparametric components. Then, we approach solving the P-IRLS problem using continuous optimization techniques. They have come to constitute an important complementary approach, alternative to the penalty methods, with flexibility for choosing the penalty parameter adaptively. In particular, we model and treat the constrained P-IRLS problem by using the elegant framework of conic quadratic programming. The method is illustrated using a small numerical example.</description><subject>Additives</subject><subject>CMARS</subject><subject>Computer simulation</subject><subject>Conic quadratic programming</subject><subject>Conics</subject><subject>Flexibility</subject><subject>Foundations</subject><subject>Generalized partial linear models</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Maximum likelihood</subject><subject>Optimization</subject><subject>Penalty methods</subject><subject>Quadratic programming</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1rGzEQFaGFuEl_QS-69bTO6MP7ccihDW0TMPiSuxhrZxOZXWkjyTV1_nxlu-fCg4GZ9x7zHmNfBCwFiPput7Q4HXApoWxAF8AVW4i2UVVT1-0HtoC2ayshpbhmn1LaAYBWEhbsfeN5fiU-hL3vMbvgEw8DnzHiRJkip5TddD4UTuQv5Cni6I7Un0jZ4chH5wkjn0JPY-IHl1_59yrNp3Xi6Htug8_O78O-eM_Fzh3Phrfs44Bjos__5g17_vnj-eGxWm9-PT18W1dWtZArhYMdVgOuBK562NquXuGWrNCNbUW9bZRQUutGdJ3QckCUDXTYWi10T6ikumFfL7ZzDG_7ksdMLlkaR_RUXjJNDVKA6urCVBemjSGlSIOZYwkf_xgB5lS02Zlz0eZUtAFdAEV1f1GV9PTbUTTJOvKWehfJZtMH91_9X40JitA</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Taylan, Pakize</creator><creator>Weber, Gerhard-Wilhelm</creator><creator>Liu, Lian</creator><creator>Yerlikaya-Özkurt, Fatma</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100701</creationdate><title>On the foundations of parameter estimation for generalized partial linear models with B-splines and continuous optimization</title><author>Taylan, Pakize ; Weber, Gerhard-Wilhelm ; Liu, Lian ; Yerlikaya-Özkurt, Fatma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-3afcf5fa51a5d0bc965abec147c816b73132447199142faa2709a8c414dea323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Additives</topic><topic>CMARS</topic><topic>Computer simulation</topic><topic>Conic quadratic programming</topic><topic>Conics</topic><topic>Flexibility</topic><topic>Foundations</topic><topic>Generalized partial linear models</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Maximum likelihood</topic><topic>Optimization</topic><topic>Penalty methods</topic><topic>Quadratic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylan, Pakize</creatorcontrib><creatorcontrib>Weber, Gerhard-Wilhelm</creatorcontrib><creatorcontrib>Liu, Lian</creatorcontrib><creatorcontrib>Yerlikaya-Özkurt, Fatma</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylan, Pakize</au><au>Weber, Gerhard-Wilhelm</au><au>Liu, Lian</au><au>Yerlikaya-Özkurt, Fatma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the foundations of parameter estimation for generalized partial linear models with B-splines and continuous optimization</atitle><jtitle>Computers &amp; mathematics with applications (1987)</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>60</volume><issue>1</issue><spage>134</spage><epage>143</epage><pages>134-143</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>Generalized linear models are widely used in statistical techniques. As an extension, generalized partial linear models utilize semiparametric methods and augment the usual parametric terms with a single nonparametric component of a continuous covariate. In this paper, after a short introduction, we present our model in the generalized additive context with a focus on the penalized maximum likelihood and the penalized iteratively reweighted least squares (P-IRLS) problem based on B-splines, which is attractive for nonparametric components. Then, we approach solving the P-IRLS problem using continuous optimization techniques. They have come to constitute an important complementary approach, alternative to the penalty methods, with flexibility for choosing the penalty parameter adaptively. In particular, we model and treat the constrained P-IRLS problem by using the elegant framework of conic quadratic programming. The method is illustrated using a small numerical example.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2010.04.040</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-1221
ispartof Computers & mathematics with applications (1987), 2010-07, Vol.60 (1), p.134-143
issn 0898-1221
1873-7668
language eng
recordid cdi_proquest_miscellaneous_760210396
source Elsevier
subjects Additives
CMARS
Computer simulation
Conic quadratic programming
Conics
Flexibility
Foundations
Generalized partial linear models
Least squares method
Mathematical models
Maximum likelihood
Optimization
Penalty methods
Quadratic programming
title On the foundations of parameter estimation for generalized partial linear models with B-splines and continuous optimization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20foundations%20of%20parameter%20estimation%20for%20generalized%20partial%20linear%20models%20with%20B-splines%20and%20continuous%20optimization&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Taylan,%20Pakize&rft.date=2010-07-01&rft.volume=60&rft.issue=1&rft.spage=134&rft.epage=143&rft.pages=134-143&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2010.04.040&rft_dat=%3Cproquest_cross%3E760210396%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-3afcf5fa51a5d0bc965abec147c816b73132447199142faa2709a8c414dea323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=760210396&rft_id=info:pmid/&rfr_iscdi=true