Loading…
On the foundations of parameter estimation for generalized partial linear models with B-splines and continuous optimization
Generalized linear models are widely used in statistical techniques. As an extension, generalized partial linear models utilize semiparametric methods and augment the usual parametric terms with a single nonparametric component of a continuous covariate. In this paper, after a short introduction, we...
Saved in:
Published in: | Computers & mathematics with applications (1987) 2010-07, Vol.60 (1), p.134-143 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c380t-3afcf5fa51a5d0bc965abec147c816b73132447199142faa2709a8c414dea323 |
---|---|
cites | cdi_FETCH-LOGICAL-c380t-3afcf5fa51a5d0bc965abec147c816b73132447199142faa2709a8c414dea323 |
container_end_page | 143 |
container_issue | 1 |
container_start_page | 134 |
container_title | Computers & mathematics with applications (1987) |
container_volume | 60 |
creator | Taylan, Pakize Weber, Gerhard-Wilhelm Liu, Lian Yerlikaya-Özkurt, Fatma |
description | Generalized linear models are widely used in statistical techniques. As an extension, generalized partial linear models utilize semiparametric methods and augment the usual parametric terms with a single nonparametric component of a continuous covariate. In this paper, after a short introduction, we present our model in the generalized additive context with a focus on the penalized maximum likelihood and the penalized iteratively reweighted least squares (P-IRLS) problem based on B-splines, which is attractive for nonparametric components. Then, we approach solving the P-IRLS problem using continuous optimization techniques. They have come to constitute an important complementary approach, alternative to the penalty methods, with flexibility for choosing the penalty parameter adaptively. In particular, we model and treat the constrained P-IRLS problem by using the elegant framework of conic quadratic programming. The method is illustrated using a small numerical example. |
doi_str_mv | 10.1016/j.camwa.2010.04.040 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760210396</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0898122110003111</els_id><sourcerecordid>760210396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-3afcf5fa51a5d0bc965abec147c816b73132447199142faa2709a8c414dea323</originalsourceid><addsrcrecordid>eNp9UE1rGzEQFaGFuEl_QS-69bTO6MP7ccihDW0TMPiSuxhrZxOZXWkjyTV1_nxlu-fCg4GZ9x7zHmNfBCwFiPput7Q4HXApoWxAF8AVW4i2UVVT1-0HtoC2ayshpbhmn1LaAYBWEhbsfeN5fiU-hL3vMbvgEw8DnzHiRJkip5TddD4UTuQv5Cni6I7Un0jZ4chH5wkjn0JPY-IHl1_59yrNp3Xi6Htug8_O78O-eM_Fzh3Phrfs44Bjos__5g17_vnj-eGxWm9-PT18W1dWtZArhYMdVgOuBK562NquXuGWrNCNbUW9bZRQUutGdJ3QckCUDXTYWi10T6ikumFfL7ZzDG_7ksdMLlkaR_RUXjJNDVKA6urCVBemjSGlSIOZYwkf_xgB5lS02Zlz0eZUtAFdAEV1f1GV9PTbUTTJOvKWehfJZtMH91_9X40JitA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760210396</pqid></control><display><type>article</type><title>On the foundations of parameter estimation for generalized partial linear models with B-splines and continuous optimization</title><source>Elsevier</source><creator>Taylan, Pakize ; Weber, Gerhard-Wilhelm ; Liu, Lian ; Yerlikaya-Özkurt, Fatma</creator><creatorcontrib>Taylan, Pakize ; Weber, Gerhard-Wilhelm ; Liu, Lian ; Yerlikaya-Özkurt, Fatma</creatorcontrib><description>Generalized linear models are widely used in statistical techniques. As an extension, generalized partial linear models utilize semiparametric methods and augment the usual parametric terms with a single nonparametric component of a continuous covariate. In this paper, after a short introduction, we present our model in the generalized additive context with a focus on the penalized maximum likelihood and the penalized iteratively reweighted least squares (P-IRLS) problem based on B-splines, which is attractive for nonparametric components. Then, we approach solving the P-IRLS problem using continuous optimization techniques. They have come to constitute an important complementary approach, alternative to the penalty methods, with flexibility for choosing the penalty parameter adaptively. In particular, we model and treat the constrained P-IRLS problem by using the elegant framework of conic quadratic programming. The method is illustrated using a small numerical example.</description><identifier>ISSN: 0898-1221</identifier><identifier>EISSN: 1873-7668</identifier><identifier>DOI: 10.1016/j.camwa.2010.04.040</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Additives ; CMARS ; Computer simulation ; Conic quadratic programming ; Conics ; Flexibility ; Foundations ; Generalized partial linear models ; Least squares method ; Mathematical models ; Maximum likelihood ; Optimization ; Penalty methods ; Quadratic programming</subject><ispartof>Computers & mathematics with applications (1987), 2010-07, Vol.60 (1), p.134-143</ispartof><rights>2010 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-3afcf5fa51a5d0bc965abec147c816b73132447199142faa2709a8c414dea323</citedby><cites>FETCH-LOGICAL-c380t-3afcf5fa51a5d0bc965abec147c816b73132447199142faa2709a8c414dea323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Taylan, Pakize</creatorcontrib><creatorcontrib>Weber, Gerhard-Wilhelm</creatorcontrib><creatorcontrib>Liu, Lian</creatorcontrib><creatorcontrib>Yerlikaya-Özkurt, Fatma</creatorcontrib><title>On the foundations of parameter estimation for generalized partial linear models with B-splines and continuous optimization</title><title>Computers & mathematics with applications (1987)</title><description>Generalized linear models are widely used in statistical techniques. As an extension, generalized partial linear models utilize semiparametric methods and augment the usual parametric terms with a single nonparametric component of a continuous covariate. In this paper, after a short introduction, we present our model in the generalized additive context with a focus on the penalized maximum likelihood and the penalized iteratively reweighted least squares (P-IRLS) problem based on B-splines, which is attractive for nonparametric components. Then, we approach solving the P-IRLS problem using continuous optimization techniques. They have come to constitute an important complementary approach, alternative to the penalty methods, with flexibility for choosing the penalty parameter adaptively. In particular, we model and treat the constrained P-IRLS problem by using the elegant framework of conic quadratic programming. The method is illustrated using a small numerical example.</description><subject>Additives</subject><subject>CMARS</subject><subject>Computer simulation</subject><subject>Conic quadratic programming</subject><subject>Conics</subject><subject>Flexibility</subject><subject>Foundations</subject><subject>Generalized partial linear models</subject><subject>Least squares method</subject><subject>Mathematical models</subject><subject>Maximum likelihood</subject><subject>Optimization</subject><subject>Penalty methods</subject><subject>Quadratic programming</subject><issn>0898-1221</issn><issn>1873-7668</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9UE1rGzEQFaGFuEl_QS-69bTO6MP7ccihDW0TMPiSuxhrZxOZXWkjyTV1_nxlu-fCg4GZ9x7zHmNfBCwFiPput7Q4HXApoWxAF8AVW4i2UVVT1-0HtoC2ayshpbhmn1LaAYBWEhbsfeN5fiU-hL3vMbvgEw8DnzHiRJkip5TddD4UTuQv5Cni6I7Un0jZ4chH5wkjn0JPY-IHl1_59yrNp3Xi6Htug8_O78O-eM_Fzh3Phrfs44Bjos__5g17_vnj-eGxWm9-PT18W1dWtZArhYMdVgOuBK562NquXuGWrNCNbUW9bZRQUutGdJ3QckCUDXTYWi10T6ikumFfL7ZzDG_7ksdMLlkaR_RUXjJNDVKA6urCVBemjSGlSIOZYwkf_xgB5lS02Zlz0eZUtAFdAEV1f1GV9PTbUTTJOvKWehfJZtMH91_9X40JitA</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Taylan, Pakize</creator><creator>Weber, Gerhard-Wilhelm</creator><creator>Liu, Lian</creator><creator>Yerlikaya-Özkurt, Fatma</creator><general>Elsevier Ltd</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100701</creationdate><title>On the foundations of parameter estimation for generalized partial linear models with B-splines and continuous optimization</title><author>Taylan, Pakize ; Weber, Gerhard-Wilhelm ; Liu, Lian ; Yerlikaya-Özkurt, Fatma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-3afcf5fa51a5d0bc965abec147c816b73132447199142faa2709a8c414dea323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Additives</topic><topic>CMARS</topic><topic>Computer simulation</topic><topic>Conic quadratic programming</topic><topic>Conics</topic><topic>Flexibility</topic><topic>Foundations</topic><topic>Generalized partial linear models</topic><topic>Least squares method</topic><topic>Mathematical models</topic><topic>Maximum likelihood</topic><topic>Optimization</topic><topic>Penalty methods</topic><topic>Quadratic programming</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Taylan, Pakize</creatorcontrib><creatorcontrib>Weber, Gerhard-Wilhelm</creatorcontrib><creatorcontrib>Liu, Lian</creatorcontrib><creatorcontrib>Yerlikaya-Özkurt, Fatma</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & mathematics with applications (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Taylan, Pakize</au><au>Weber, Gerhard-Wilhelm</au><au>Liu, Lian</au><au>Yerlikaya-Özkurt, Fatma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the foundations of parameter estimation for generalized partial linear models with B-splines and continuous optimization</atitle><jtitle>Computers & mathematics with applications (1987)</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>60</volume><issue>1</issue><spage>134</spage><epage>143</epage><pages>134-143</pages><issn>0898-1221</issn><eissn>1873-7668</eissn><abstract>Generalized linear models are widely used in statistical techniques. As an extension, generalized partial linear models utilize semiparametric methods and augment the usual parametric terms with a single nonparametric component of a continuous covariate. In this paper, after a short introduction, we present our model in the generalized additive context with a focus on the penalized maximum likelihood and the penalized iteratively reweighted least squares (P-IRLS) problem based on B-splines, which is attractive for nonparametric components. Then, we approach solving the P-IRLS problem using continuous optimization techniques. They have come to constitute an important complementary approach, alternative to the penalty methods, with flexibility for choosing the penalty parameter adaptively. In particular, we model and treat the constrained P-IRLS problem by using the elegant framework of conic quadratic programming. The method is illustrated using a small numerical example.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.camwa.2010.04.040</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-1221 |
ispartof | Computers & mathematics with applications (1987), 2010-07, Vol.60 (1), p.134-143 |
issn | 0898-1221 1873-7668 |
language | eng |
recordid | cdi_proquest_miscellaneous_760210396 |
source | Elsevier |
subjects | Additives CMARS Computer simulation Conic quadratic programming Conics Flexibility Foundations Generalized partial linear models Least squares method Mathematical models Maximum likelihood Optimization Penalty methods Quadratic programming |
title | On the foundations of parameter estimation for generalized partial linear models with B-splines and continuous optimization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A59%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20foundations%20of%20parameter%20estimation%20for%20generalized%20partial%20linear%20models%20with%20B-splines%20and%20continuous%20optimization&rft.jtitle=Computers%20&%20mathematics%20with%20applications%20(1987)&rft.au=Taylan,%20Pakize&rft.date=2010-07-01&rft.volume=60&rft.issue=1&rft.spage=134&rft.epage=143&rft.pages=134-143&rft.issn=0898-1221&rft.eissn=1873-7668&rft_id=info:doi/10.1016/j.camwa.2010.04.040&rft_dat=%3Cproquest_cross%3E760210396%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c380t-3afcf5fa51a5d0bc965abec147c816b73132447199142faa2709a8c414dea323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=760210396&rft_id=info:pmid/&rfr_iscdi=true |