Loading…
An unsupervised marker image generation method for watershed segmentation of multispectral imagery
Watershed transformation in mathematical morphology is a powerful tool for image segmentation. Watershed transformation based segmentation is generally a marker-controlled segmentation. This paper proposes a novel method of maker image generation based on unsupervised ISODATA classification. The met...
Saved in:
Published in: | Geosciences journal (Seoul, Korea) Korea), 2004-09, Vol.8 (3), p.325-331 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a382t-8b6c965f596544d9875a0b178d63c0d92152602b6a91a482105890b0712c48793 |
---|---|
cites | cdi_FETCH-LOGICAL-a382t-8b6c965f596544d9875a0b178d63c0d92152602b6a91a482105890b0712c48793 |
container_end_page | 331 |
container_issue | 3 |
container_start_page | 325 |
container_title | Geosciences journal (Seoul, Korea) |
container_volume | 8 |
creator | Li, Peijun Xiao, Xiaobai |
description | Watershed transformation in mathematical morphology is a powerful tool for image segmentation. Watershed transformation based segmentation is generally a marker-controlled segmentation. This paper proposes a novel method of maker image generation based on unsupervised ISODATA classification. The method incorporates spectral information contained in multispectral data into watershed transformation for image segmentation. The method is evaluated and compared to existing unsupervised method. The results show that the proposed method could effectively reduce the oversegmentation effect and achieve more accurate segmentation results, compared to existing method. The combination of segmentation result and pixed-based classification is found to improve the overall classification accuracy over pixel-based classification. |
doi_str_mv | 10.1007/BF02910252 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760210706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2786946720</sourcerecordid><originalsourceid>FETCH-LOGICAL-a382t-8b6c965f596544d9875a0b178d63c0d92152602b6a91a482105890b0712c48793</originalsourceid><addsrcrecordid>eNp10c1KxDAQAOAgCq6rF58g6EEQqpO0-Tuui6vCghc9l7RNd7u2TU1SZd_eSAVBkMBkDt8MMwxC5wRuCIC4vVsBVQQoowdoRpiSiciEOIw5pTzJJPBjdOL9DoCJFMQMFYsej70fB-M-Gm8q3Gn3ZhxuOr0xeGN643RobI87E7a2wrV1-FMH4_w2Ym82nenDJGyNu7ENjR9MGZxupx5uf4qOat16c_bzz9Hr6v5l-Zisnx-elot1olNJQyILXirOahZDllVKCqahIEJWPC2hUpQwyoEWXCuiM0kJMKmgAEFomUmh0jm6mvoOzr6Pxoe8a3xp2lb3xo4-F7GagAAe5cUfubOj6-NwOWdc0JTEN0eX_yEqJFdZhBDV9aRKZ713ps4HF_d2-5xA_n2S_Pck6Rf1Inw5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>656723131</pqid></control><display><type>article</type><title>An unsupervised marker image generation method for watershed segmentation of multispectral imagery</title><source>Springer Link</source><creator>Li, Peijun ; Xiao, Xiaobai</creator><creatorcontrib>Li, Peijun ; Xiao, Xiaobai</creatorcontrib><description>Watershed transformation in mathematical morphology is a powerful tool for image segmentation. Watershed transformation based segmentation is generally a marker-controlled segmentation. This paper proposes a novel method of maker image generation based on unsupervised ISODATA classification. The method incorporates spectral information contained in multispectral data into watershed transformation for image segmentation. The method is evaluated and compared to existing unsupervised method. The results show that the proposed method could effectively reduce the oversegmentation effect and achieve more accurate segmentation results, compared to existing method. The combination of segmentation result and pixed-based classification is found to improve the overall classification accuracy over pixel-based classification.</description><identifier>ISSN: 1226-4806</identifier><identifier>EISSN: 1598-7477</identifier><identifier>DOI: 10.1007/BF02910252</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Classification ; Genetic transformation ; Image processing ; Image segmentation ; Markers ; Mathematical analysis ; Mathematical morphology ; Methods ; Segmentation ; Spectra ; Transformations ; Watersheds</subject><ispartof>Geosciences journal (Seoul, Korea), 2004-09, Vol.8 (3), p.325-331</ispartof><rights>Springer 2004.</rights><rights>Springer 2004</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a382t-8b6c965f596544d9875a0b178d63c0d92152602b6a91a482105890b0712c48793</citedby><cites>FETCH-LOGICAL-a382t-8b6c965f596544d9875a0b178d63c0d92152602b6a91a482105890b0712c48793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Li, Peijun</creatorcontrib><creatorcontrib>Xiao, Xiaobai</creatorcontrib><title>An unsupervised marker image generation method for watershed segmentation of multispectral imagery</title><title>Geosciences journal (Seoul, Korea)</title><description>Watershed transformation in mathematical morphology is a powerful tool for image segmentation. Watershed transformation based segmentation is generally a marker-controlled segmentation. This paper proposes a novel method of maker image generation based on unsupervised ISODATA classification. The method incorporates spectral information contained in multispectral data into watershed transformation for image segmentation. The method is evaluated and compared to existing unsupervised method. The results show that the proposed method could effectively reduce the oversegmentation effect and achieve more accurate segmentation results, compared to existing method. The combination of segmentation result and pixed-based classification is found to improve the overall classification accuracy over pixel-based classification.</description><subject>Classification</subject><subject>Genetic transformation</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Markers</subject><subject>Mathematical analysis</subject><subject>Mathematical morphology</subject><subject>Methods</subject><subject>Segmentation</subject><subject>Spectra</subject><subject>Transformations</subject><subject>Watersheds</subject><issn>1226-4806</issn><issn>1598-7477</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp10c1KxDAQAOAgCq6rF58g6EEQqpO0-Tuui6vCghc9l7RNd7u2TU1SZd_eSAVBkMBkDt8MMwxC5wRuCIC4vVsBVQQoowdoRpiSiciEOIw5pTzJJPBjdOL9DoCJFMQMFYsej70fB-M-Gm8q3Gn3ZhxuOr0xeGN643RobI87E7a2wrV1-FMH4_w2Ym82nenDJGyNu7ENjR9MGZxupx5uf4qOat16c_bzz9Hr6v5l-Zisnx-elot1olNJQyILXirOahZDllVKCqahIEJWPC2hUpQwyoEWXCuiM0kJMKmgAEFomUmh0jm6mvoOzr6Pxoe8a3xp2lb3xo4-F7GagAAe5cUfubOj6-NwOWdc0JTEN0eX_yEqJFdZhBDV9aRKZ713ps4HF_d2-5xA_n2S_Pck6Rf1Inw5</recordid><startdate>20040901</startdate><enddate>20040901</enddate><creator>Li, Peijun</creator><creator>Xiao, Xiaobai</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20040901</creationdate><title>An unsupervised marker image generation method for watershed segmentation of multispectral imagery</title><author>Li, Peijun ; Xiao, Xiaobai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a382t-8b6c965f596544d9875a0b178d63c0d92152602b6a91a482105890b0712c48793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Classification</topic><topic>Genetic transformation</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Markers</topic><topic>Mathematical analysis</topic><topic>Mathematical morphology</topic><topic>Methods</topic><topic>Segmentation</topic><topic>Spectra</topic><topic>Transformations</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Peijun</creatorcontrib><creatorcontrib>Xiao, Xiaobai</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Geosciences journal (Seoul, Korea)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Peijun</au><au>Xiao, Xiaobai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An unsupervised marker image generation method for watershed segmentation of multispectral imagery</atitle><jtitle>Geosciences journal (Seoul, Korea)</jtitle><date>2004-09-01</date><risdate>2004</risdate><volume>8</volume><issue>3</issue><spage>325</spage><epage>331</epage><pages>325-331</pages><issn>1226-4806</issn><eissn>1598-7477</eissn><abstract>Watershed transformation in mathematical morphology is a powerful tool for image segmentation. Watershed transformation based segmentation is generally a marker-controlled segmentation. This paper proposes a novel method of maker image generation based on unsupervised ISODATA classification. The method incorporates spectral information contained in multispectral data into watershed transformation for image segmentation. The method is evaluated and compared to existing unsupervised method. The results show that the proposed method could effectively reduce the oversegmentation effect and achieve more accurate segmentation results, compared to existing method. The combination of segmentation result and pixed-based classification is found to improve the overall classification accuracy over pixel-based classification.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1007/BF02910252</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1226-4806 |
ispartof | Geosciences journal (Seoul, Korea), 2004-09, Vol.8 (3), p.325-331 |
issn | 1226-4806 1598-7477 |
language | eng |
recordid | cdi_proquest_miscellaneous_760210706 |
source | Springer Link |
subjects | Classification Genetic transformation Image processing Image segmentation Markers Mathematical analysis Mathematical morphology Methods Segmentation Spectra Transformations Watersheds |
title | An unsupervised marker image generation method for watershed segmentation of multispectral imagery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A27%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20unsupervised%20marker%20image%20generation%20method%20for%20watershed%20segmentation%20of%20multispectral%20imagery&rft.jtitle=Geosciences%20journal%20(Seoul,%20Korea)&rft.au=Li,%20Peijun&rft.date=2004-09-01&rft.volume=8&rft.issue=3&rft.spage=325&rft.epage=331&rft.pages=325-331&rft.issn=1226-4806&rft.eissn=1598-7477&rft_id=info:doi/10.1007/BF02910252&rft_dat=%3Cproquest_cross%3E2786946720%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a382t-8b6c965f596544d9875a0b178d63c0d92152602b6a91a482105890b0712c48793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=656723131&rft_id=info:pmid/&rfr_iscdi=true |