Loading…
Monte Carlo comparisons of estimators for pH non-linearity
Monte Carlo methods are used to compare the performance of four non-linear estimators when applied to the logarithmic pH non-linearity. The estimators are: direct inversion of the non-linearity, Bayes'rule, extended Kalman filter, statistical linearisation. It is found that the unbiased optimal...
Saved in:
Published in: | Transactions of the Institute of Measurement and Control 1984-10, Vol.6 (6), p.287-292 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c1462-490f09aa2e571a53924251dd0e796be7f2d28f460c020e023e1d45e0a658424a3 |
container_end_page | 292 |
container_issue | 6 |
container_start_page | 287 |
container_title | Transactions of the Institute of Measurement and Control |
container_volume | 6 |
creator | Jacobs, O.L.R. Briggs, M.S. |
description | Monte Carlo methods are used to compare the performance of four non-linear estimators when applied to the logarithmic pH non-linearity. The estimators are: direct inversion of the non-linearity, Bayes'rule, extended Kalman filter, statistical linearisation. It is found that the unbiased optimal estimates of Bayes' rule are in many cases significantly better than the other estimates. It is concluded that the Bayes algorithm could be useful for practical purposes. |
doi_str_mv | 10.1177/014233128400600602 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760215489</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_014233128400600602</sage_id><sourcerecordid>24276536</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1462-490f09aa2e571a53924251dd0e796be7f2d28f460c020e023e1d45e0a658424a3</originalsourceid><addsrcrecordid>eNp9kDFPwzAQhS0EEqXwB5gywRR6ts92woYqSpGKWGC2TGKjVKkd7HTov8dR2ZAqnXTL997de4TcUnigVKkFUGScU1YhgJyGnZEZRaVK4LI-J7MJKCfiklyltAUARIkz8vgW_GiLpYl9KJqwG0zsUvCpCK6waex2ZgwxFS7EYlgXPviy77zN0Hi4JhfO9Mne_O05-Vw9fyzX5eb95XX5tCkbipKVWIOD2hhmhaJG8JohE7RtwapaflnlWMsqhxIaYGCBcUtbFBaMFBUyNHxO7o--Qww_-_yU3nWpsX1vvA37pFVOSwVWdSbvTpL5spKCywyyI9jEkFK0Tg8xR40HTUFPher_hWbR4ihK5tvqbdhHn2OfUvwC9_hzMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>24276536</pqid></control><display><type>article</type><title>Monte Carlo comparisons of estimators for pH non-linearity</title><source>SAGE Complete Deep Backfile Purchase 2012</source><creator>Jacobs, O.L.R. ; Briggs, M.S.</creator><creatorcontrib>Jacobs, O.L.R. ; Briggs, M.S.</creatorcontrib><description>Monte Carlo methods are used to compare the performance of four non-linear estimators when applied to the logarithmic pH non-linearity. The estimators are: direct inversion of the non-linearity, Bayes'rule, extended Kalman filter, statistical linearisation. It is found that the unbiased optimal estimates of Bayes' rule are in many cases significantly better than the other estimates. It is concluded that the Bayes algorithm could be useful for practical purposes.</description><identifier>ISSN: 0142-3312</identifier><identifier>EISSN: 1477-0369</identifier><identifier>DOI: 10.1177/014233128400600602</identifier><language>eng</language><publisher>Thousand Oaks, CA: SAGE Publications</publisher><subject>Algorithms ; Bayesian analysis ; Estimates ; Estimators ; Inversions ; Monte Carlo methods ; Nonlinearity ; Optimization</subject><ispartof>Transactions of the Institute of Measurement and Control, 1984-10, Vol.6 (6), p.287-292</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1462-490f09aa2e571a53924251dd0e796be7f2d28f460c020e023e1d45e0a658424a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/014233128400600602$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/014233128400600602$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,780,784,21845,27924,27925,45082,45470</link.rule.ids></links><search><creatorcontrib>Jacobs, O.L.R.</creatorcontrib><creatorcontrib>Briggs, M.S.</creatorcontrib><title>Monte Carlo comparisons of estimators for pH non-linearity</title><title>Transactions of the Institute of Measurement and Control</title><description>Monte Carlo methods are used to compare the performance of four non-linear estimators when applied to the logarithmic pH non-linearity. The estimators are: direct inversion of the non-linearity, Bayes'rule, extended Kalman filter, statistical linearisation. It is found that the unbiased optimal estimates of Bayes' rule are in many cases significantly better than the other estimates. It is concluded that the Bayes algorithm could be useful for practical purposes.</description><subject>Algorithms</subject><subject>Bayesian analysis</subject><subject>Estimates</subject><subject>Estimators</subject><subject>Inversions</subject><subject>Monte Carlo methods</subject><subject>Nonlinearity</subject><subject>Optimization</subject><issn>0142-3312</issn><issn>1477-0369</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1984</creationdate><recordtype>article</recordtype><recordid>eNp9kDFPwzAQhS0EEqXwB5gywRR6ts92woYqSpGKWGC2TGKjVKkd7HTov8dR2ZAqnXTL997de4TcUnigVKkFUGScU1YhgJyGnZEZRaVK4LI-J7MJKCfiklyltAUARIkz8vgW_GiLpYl9KJqwG0zsUvCpCK6waex2ZgwxFS7EYlgXPviy77zN0Hi4JhfO9Mne_O05-Vw9fyzX5eb95XX5tCkbipKVWIOD2hhmhaJG8JohE7RtwapaflnlWMsqhxIaYGCBcUtbFBaMFBUyNHxO7o--Qww_-_yU3nWpsX1vvA37pFVOSwVWdSbvTpL5spKCywyyI9jEkFK0Tg8xR40HTUFPher_hWbR4ihK5tvqbdhHn2OfUvwC9_hzMg</recordid><startdate>198410</startdate><enddate>198410</enddate><creator>Jacobs, O.L.R.</creator><creator>Briggs, M.S.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>7SP</scope><scope>L7M</scope></search><sort><creationdate>198410</creationdate><title>Monte Carlo comparisons of estimators for pH non-linearity</title><author>Jacobs, O.L.R. ; Briggs, M.S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1462-490f09aa2e571a53924251dd0e796be7f2d28f460c020e023e1d45e0a658424a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1984</creationdate><topic>Algorithms</topic><topic>Bayesian analysis</topic><topic>Estimates</topic><topic>Estimators</topic><topic>Inversions</topic><topic>Monte Carlo methods</topic><topic>Nonlinearity</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacobs, O.L.R.</creatorcontrib><creatorcontrib>Briggs, M.S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Electronics & Communications Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Transactions of the Institute of Measurement and Control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacobs, O.L.R.</au><au>Briggs, M.S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monte Carlo comparisons of estimators for pH non-linearity</atitle><jtitle>Transactions of the Institute of Measurement and Control</jtitle><date>1984-10</date><risdate>1984</risdate><volume>6</volume><issue>6</issue><spage>287</spage><epage>292</epage><pages>287-292</pages><issn>0142-3312</issn><eissn>1477-0369</eissn><abstract>Monte Carlo methods are used to compare the performance of four non-linear estimators when applied to the logarithmic pH non-linearity. The estimators are: direct inversion of the non-linearity, Bayes'rule, extended Kalman filter, statistical linearisation. It is found that the unbiased optimal estimates of Bayes' rule are in many cases significantly better than the other estimates. It is concluded that the Bayes algorithm could be useful for practical purposes.</abstract><cop>Thousand Oaks, CA</cop><pub>SAGE Publications</pub><doi>10.1177/014233128400600602</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0142-3312 |
ispartof | Transactions of the Institute of Measurement and Control, 1984-10, Vol.6 (6), p.287-292 |
issn | 0142-3312 1477-0369 |
language | eng |
recordid | cdi_proquest_miscellaneous_760215489 |
source | SAGE Complete Deep Backfile Purchase 2012 |
subjects | Algorithms Bayesian analysis Estimates Estimators Inversions Monte Carlo methods Nonlinearity Optimization |
title | Monte Carlo comparisons of estimators for pH non-linearity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T12%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monte%20Carlo%20comparisons%20of%20estimators%20for%20pH%20non-linearity&rft.jtitle=Transactions%20of%20the%20Institute%20of%20Measurement%20and%20Control&rft.au=Jacobs,%20O.L.R.&rft.date=1984-10&rft.volume=6&rft.issue=6&rft.spage=287&rft.epage=292&rft.pages=287-292&rft.issn=0142-3312&rft.eissn=1477-0369&rft_id=info:doi/10.1177/014233128400600602&rft_dat=%3Cproquest_cross%3E24276536%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1462-490f09aa2e571a53924251dd0e796be7f2d28f460c020e023e1d45e0a658424a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=24276536&rft_id=info:pmid/&rft_sage_id=10.1177_014233128400600602&rfr_iscdi=true |