Loading…

Equatorial predictions from a new neural network based global foF2 model

A new neural network (NN) based global empirical model for the foF2 parameter, which represents the peak ionospheric electron density, has been developed using extended temporal and spatial geophysical relevant inputs. It has been proposed that this new model be considered as a suitable replacement...

Full description

Saved in:
Bibliographic Details
Published in:Advances in space research 2010-10, Vol.46 (8), p.1016-1023
Main Authors: McKinnell, L.A., Oyeyemi, E.O.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c395t-99c7d00101e1b45e52d01698bd431c40b3ab285bfc868489b82aa5a0828871c43
cites cdi_FETCH-LOGICAL-c395t-99c7d00101e1b45e52d01698bd431c40b3ab285bfc868489b82aa5a0828871c43
container_end_page 1023
container_issue 8
container_start_page 1016
container_title Advances in space research
container_volume 46
creator McKinnell, L.A.
Oyeyemi, E.O.
description A new neural network (NN) based global empirical model for the foF2 parameter, which represents the peak ionospheric electron density, has been developed using extended temporal and spatial geophysical relevant inputs. It has been proposed that this new model be considered as a suitable replacement for the International Union of Radio Science (URSI) and International Radio Consultative Committee (CCIR) model options currently used within the International Reference Ionosphere (IRI) model for the purpose of F2 peak electron density predictions. The most recent version of the model has incorporated data from 135 global ionospheric stations including a number of equatorial stations. This paper concentrates on the ability of this new model to predict foF2 for the equatorial sector, an area that has been identified as problematic within the current IRI peak prediction setup. The improvement in the predictions of the foF2 parameter by the new model as compared to the URSI and CCIR model options of the IRI is demonstrated and the requirement for additional foF2 data from the equatorial zone for the purpose of global modeling of foF2 is highlighted in this paper.
doi_str_mv 10.1016/j.asr.2010.06.003
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_760216778</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273117710003856</els_id><sourcerecordid>760216778</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-99c7d00101e1b45e52d01698bd431c40b3ab285bfc868489b82aa5a0828871c43</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEEmPwA7j1xqnFST-SihOaNoY0iQucoyR1UUrbbEnLxL8n0zhzsCzb72snDyH3FDIKtHrsMhV8xiDWUGUA-QVZUMHrlNaFuCQLYDxPKeX8mtyE0AFQxjksyHZ9mNXkvFV9svfYWDNZN4ak9W5IVDLiMcbs43TE6ej8V6JVwCb57J2OzdZtWDK4BvtbctWqPuDdX16Sj836fbVNd28vr6vnXWryupzSuja8ideBItVFiSVr4vNroZsip6YAnSvNRKlbIypRiFoLplSpQDAheBTkS_Jw3rv37jBjmORgg8G-VyO6OUheAaMV5yIq6VlpvAvBYyv33g7K_0gK8gRNdjJCkydoEioZoUXP09mD8QvfFr0MxuJoIhiPZpKNs_-4fwE5Y3Ov</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>760216778</pqid></control><display><type>article</type><title>Equatorial predictions from a new neural network based global foF2 model</title><source>ScienceDirect Journals</source><creator>McKinnell, L.A. ; Oyeyemi, E.O.</creator><creatorcontrib>McKinnell, L.A. ; Oyeyemi, E.O.</creatorcontrib><description>A new neural network (NN) based global empirical model for the foF2 parameter, which represents the peak ionospheric electron density, has been developed using extended temporal and spatial geophysical relevant inputs. It has been proposed that this new model be considered as a suitable replacement for the International Union of Radio Science (URSI) and International Radio Consultative Committee (CCIR) model options currently used within the International Reference Ionosphere (IRI) model for the purpose of F2 peak electron density predictions. The most recent version of the model has incorporated data from 135 global ionospheric stations including a number of equatorial stations. This paper concentrates on the ability of this new model to predict foF2 for the equatorial sector, an area that has been identified as problematic within the current IRI peak prediction setup. The improvement in the predictions of the foF2 parameter by the new model as compared to the URSI and CCIR model options of the IRI is demonstrated and the requirement for additional foF2 data from the equatorial zone for the purpose of global modeling of foF2 is highlighted in this paper.</description><identifier>ISSN: 0273-1177</identifier><identifier>EISSN: 1879-1948</identifier><identifier>DOI: 10.1016/j.asr.2010.06.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Equatorial ionosphere ; foF2 ; IRI ; Modeling ; Neural networks</subject><ispartof>Advances in space research, 2010-10, Vol.46 (8), p.1016-1023</ispartof><rights>2010 COSPAR</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-99c7d00101e1b45e52d01698bd431c40b3ab285bfc868489b82aa5a0828871c43</citedby><cites>FETCH-LOGICAL-c395t-99c7d00101e1b45e52d01698bd431c40b3ab285bfc868489b82aa5a0828871c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>McKinnell, L.A.</creatorcontrib><creatorcontrib>Oyeyemi, E.O.</creatorcontrib><title>Equatorial predictions from a new neural network based global foF2 model</title><title>Advances in space research</title><description>A new neural network (NN) based global empirical model for the foF2 parameter, which represents the peak ionospheric electron density, has been developed using extended temporal and spatial geophysical relevant inputs. It has been proposed that this new model be considered as a suitable replacement for the International Union of Radio Science (URSI) and International Radio Consultative Committee (CCIR) model options currently used within the International Reference Ionosphere (IRI) model for the purpose of F2 peak electron density predictions. The most recent version of the model has incorporated data from 135 global ionospheric stations including a number of equatorial stations. This paper concentrates on the ability of this new model to predict foF2 for the equatorial sector, an area that has been identified as problematic within the current IRI peak prediction setup. The improvement in the predictions of the foF2 parameter by the new model as compared to the URSI and CCIR model options of the IRI is demonstrated and the requirement for additional foF2 data from the equatorial zone for the purpose of global modeling of foF2 is highlighted in this paper.</description><subject>Equatorial ionosphere</subject><subject>foF2</subject><subject>IRI</subject><subject>Modeling</subject><subject>Neural networks</subject><issn>0273-1177</issn><issn>1879-1948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEEmPwA7j1xqnFST-SihOaNoY0iQucoyR1UUrbbEnLxL8n0zhzsCzb72snDyH3FDIKtHrsMhV8xiDWUGUA-QVZUMHrlNaFuCQLYDxPKeX8mtyE0AFQxjksyHZ9mNXkvFV9svfYWDNZN4ak9W5IVDLiMcbs43TE6ej8V6JVwCb57J2OzdZtWDK4BvtbctWqPuDdX16Sj836fbVNd28vr6vnXWryupzSuja8ideBItVFiSVr4vNroZsip6YAnSvNRKlbIypRiFoLplSpQDAheBTkS_Jw3rv37jBjmORgg8G-VyO6OUheAaMV5yIq6VlpvAvBYyv33g7K_0gK8gRNdjJCkydoEioZoUXP09mD8QvfFr0MxuJoIhiPZpKNs_-4fwE5Y3Ov</recordid><startdate>20101015</startdate><enddate>20101015</enddate><creator>McKinnell, L.A.</creator><creator>Oyeyemi, E.O.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20101015</creationdate><title>Equatorial predictions from a new neural network based global foF2 model</title><author>McKinnell, L.A. ; Oyeyemi, E.O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-99c7d00101e1b45e52d01698bd431c40b3ab285bfc868489b82aa5a0828871c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Equatorial ionosphere</topic><topic>foF2</topic><topic>IRI</topic><topic>Modeling</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKinnell, L.A.</creatorcontrib><creatorcontrib>Oyeyemi, E.O.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Advances in space research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKinnell, L.A.</au><au>Oyeyemi, E.O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Equatorial predictions from a new neural network based global foF2 model</atitle><jtitle>Advances in space research</jtitle><date>2010-10-15</date><risdate>2010</risdate><volume>46</volume><issue>8</issue><spage>1016</spage><epage>1023</epage><pages>1016-1023</pages><issn>0273-1177</issn><eissn>1879-1948</eissn><abstract>A new neural network (NN) based global empirical model for the foF2 parameter, which represents the peak ionospheric electron density, has been developed using extended temporal and spatial geophysical relevant inputs. It has been proposed that this new model be considered as a suitable replacement for the International Union of Radio Science (URSI) and International Radio Consultative Committee (CCIR) model options currently used within the International Reference Ionosphere (IRI) model for the purpose of F2 peak electron density predictions. The most recent version of the model has incorporated data from 135 global ionospheric stations including a number of equatorial stations. This paper concentrates on the ability of this new model to predict foF2 for the equatorial sector, an area that has been identified as problematic within the current IRI peak prediction setup. The improvement in the predictions of the foF2 parameter by the new model as compared to the URSI and CCIR model options of the IRI is demonstrated and the requirement for additional foF2 data from the equatorial zone for the purpose of global modeling of foF2 is highlighted in this paper.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.asr.2010.06.003</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-1177
ispartof Advances in space research, 2010-10, Vol.46 (8), p.1016-1023
issn 0273-1177
1879-1948
language eng
recordid cdi_proquest_miscellaneous_760216778
source ScienceDirect Journals
subjects Equatorial ionosphere
foF2
IRI
Modeling
Neural networks
title Equatorial predictions from a new neural network based global foF2 model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A04%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Equatorial%20predictions%20from%20a%20new%20neural%20network%20based%20global%20foF2%20model&rft.jtitle=Advances%20in%20space%20research&rft.au=McKinnell,%20L.A.&rft.date=2010-10-15&rft.volume=46&rft.issue=8&rft.spage=1016&rft.epage=1023&rft.pages=1016-1023&rft.issn=0273-1177&rft.eissn=1879-1948&rft_id=info:doi/10.1016/j.asr.2010.06.003&rft_dat=%3Cproquest_cross%3E760216778%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c395t-99c7d00101e1b45e52d01698bd431c40b3ab285bfc868489b82aa5a0828871c43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=760216778&rft_id=info:pmid/&rfr_iscdi=true