Loading…

The Inverse Problem of Dynamics for Systems with Non-Stationary Lagrangian

We construct a non-stationary form of the Lagrangian of a material point with a known integral of motion and given monoparametric family of evolving orbits. An equation for non-stationary space symmetrical 'potential' function of such Lagrangian is given and this stands for the analog of S...

Full description

Saved in:
Bibliographic Details
Published in:Celestial mechanics and dynamical astronomy 1997-12, Vol.69 (4), p.347-355
Main Authors: Omarov, T B, Omarova, G T
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 355
container_issue 4
container_start_page 347
container_title Celestial mechanics and dynamical astronomy
container_volume 69
creator Omarov, T B
Omarova, G T
description We construct a non-stationary form of the Lagrangian of a material point with a known integral of motion and given monoparametric family of evolving orbits. An equation for non-stationary space symmetrical 'potential' function of such Lagrangian is given and this stands for the analog of Szebehely's (1974) equation. As an application of the problem, an integrable equation from celestial mechanics of variable mass with use of non-perturbed orbits of evolving type is constructed. On its basis adiabatic invariants of non-stationary two-body problem containing a tangential force are found.
doi_str_mv 10.1023/A:1008221021467
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_760217893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>760217893</sourcerecordid><originalsourceid>FETCH-LOGICAL-p245t-af966a74b894aafc841c340a71bcf5019eede23f2f3c668dbbf7fbb7f37b3bd73</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgCtbq2m1wo5vRvG_irtRXpajQui7JNGmnzCR1MlX67x3QlQtXlwMfB85F6JySa0oYvxndUkI0Y32gQsEBGlAJrDAC9CEaEMN4wYzUx-gk5w0hRBIjB-h5vvZ4Ej99mz1-a5OrfYNTwHf7aJuqzDikFs_2ufNNxl9Vt8YvKRazznZVirbd46ldtTauKhtP0VGwdfZnv3eI3h_u5-OnYvr6OBmPpsWWCdkVNhilLAinjbA2lFrQkgtigboySEKN90vPeGCBl0rppXMBgnMQODjulsCH6PKnd9umj53P3aKpcunr2kafdnkBqv8AaMN7efWvpAqoAA5E9PTiD92kXRv7HQsQUmnJuODfHipqzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745685234</pqid></control><display><type>article</type><title>The Inverse Problem of Dynamics for Systems with Non-Stationary Lagrangian</title><source>Springer Nature</source><creator>Omarov, T B ; Omarova, G T</creator><creatorcontrib>Omarov, T B ; Omarova, G T</creatorcontrib><description>We construct a non-stationary form of the Lagrangian of a material point with a known integral of motion and given monoparametric family of evolving orbits. An equation for non-stationary space symmetrical 'potential' function of such Lagrangian is given and this stands for the analog of Szebehely's (1974) equation. As an application of the problem, an integrable equation from celestial mechanics of variable mass with use of non-perturbed orbits of evolving type is constructed. On its basis adiabatic invariants of non-stationary two-body problem containing a tangential force are found.</description><identifier>ISSN: 0923-2958</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1023/A:1008221021467</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Astronomy ; Celestial mechanics ; Dynamical systems ; Dynamics ; Invariants ; Inverse problems ; Mathematical analysis ; Orbits ; Stands ; Studies</subject><ispartof>Celestial mechanics and dynamical astronomy, 1997-12, Vol.69 (4), p.347-355</ispartof><rights>Kluwer Academic Publishers 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Omarov, T B</creatorcontrib><creatorcontrib>Omarova, G T</creatorcontrib><title>The Inverse Problem of Dynamics for Systems with Non-Stationary Lagrangian</title><title>Celestial mechanics and dynamical astronomy</title><description>We construct a non-stationary form of the Lagrangian of a material point with a known integral of motion and given monoparametric family of evolving orbits. An equation for non-stationary space symmetrical 'potential' function of such Lagrangian is given and this stands for the analog of Szebehely's (1974) equation. As an application of the problem, an integrable equation from celestial mechanics of variable mass with use of non-perturbed orbits of evolving type is constructed. On its basis adiabatic invariants of non-stationary two-body problem containing a tangential force are found.</description><subject>Astronomy</subject><subject>Celestial mechanics</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Invariants</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Orbits</subject><subject>Stands</subject><subject>Studies</subject><issn>0923-2958</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUBeAgCtbq2m1wo5vRvG_irtRXpajQui7JNGmnzCR1MlX67x3QlQtXlwMfB85F6JySa0oYvxndUkI0Y32gQsEBGlAJrDAC9CEaEMN4wYzUx-gk5w0hRBIjB-h5vvZ4Ej99mz1-a5OrfYNTwHf7aJuqzDikFs_2ufNNxl9Vt8YvKRazznZVirbd46ldtTauKhtP0VGwdfZnv3eI3h_u5-OnYvr6OBmPpsWWCdkVNhilLAinjbA2lFrQkgtigboySEKN90vPeGCBl0rppXMBgnMQODjulsCH6PKnd9umj53P3aKpcunr2kafdnkBqv8AaMN7efWvpAqoAA5E9PTiD92kXRv7HQsQUmnJuODfHipqzw</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Omarov, T B</creator><creator>Omarova, G T</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>19971201</creationdate><title>The Inverse Problem of Dynamics for Systems with Non-Stationary Lagrangian</title><author>Omarov, T B ; Omarova, G T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p245t-af966a74b894aafc841c340a71bcf5019eede23f2f3c668dbbf7fbb7f37b3bd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Astronomy</topic><topic>Celestial mechanics</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Invariants</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Orbits</topic><topic>Stands</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omarov, T B</creatorcontrib><creatorcontrib>Omarova, G T</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Celestial mechanics and dynamical astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omarov, T B</au><au>Omarova, G T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Inverse Problem of Dynamics for Systems with Non-Stationary Lagrangian</atitle><jtitle>Celestial mechanics and dynamical astronomy</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>69</volume><issue>4</issue><spage>347</spage><epage>355</epage><pages>347-355</pages><issn>0923-2958</issn><eissn>1572-9478</eissn><abstract>We construct a non-stationary form of the Lagrangian of a material point with a known integral of motion and given monoparametric family of evolving orbits. An equation for non-stationary space symmetrical 'potential' function of such Lagrangian is given and this stands for the analog of Szebehely's (1974) equation. As an application of the problem, an integrable equation from celestial mechanics of variable mass with use of non-perturbed orbits of evolving type is constructed. On its basis adiabatic invariants of non-stationary two-body problem containing a tangential force are found.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1008221021467</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0923-2958
ispartof Celestial mechanics and dynamical astronomy, 1997-12, Vol.69 (4), p.347-355
issn 0923-2958
1572-9478
language eng
recordid cdi_proquest_miscellaneous_760217893
source Springer Nature
subjects Astronomy
Celestial mechanics
Dynamical systems
Dynamics
Invariants
Inverse problems
Mathematical analysis
Orbits
Stands
Studies
title The Inverse Problem of Dynamics for Systems with Non-Stationary Lagrangian
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Inverse%20Problem%20of%20Dynamics%20for%20Systems%20with%20Non-Stationary%20Lagrangian&rft.jtitle=Celestial%20mechanics%20and%20dynamical%20astronomy&rft.au=Omarov,%20T%20B&rft.date=1997-12-01&rft.volume=69&rft.issue=4&rft.spage=347&rft.epage=355&rft.pages=347-355&rft.issn=0923-2958&rft.eissn=1572-9478&rft_id=info:doi/10.1023/A:1008221021467&rft_dat=%3Cproquest%3E760217893%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p245t-af966a74b894aafc841c340a71bcf5019eede23f2f3c668dbbf7fbb7f37b3bd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=745685234&rft_id=info:pmid/&rfr_iscdi=true