Loading…
The Inverse Problem of Dynamics for Systems with Non-Stationary Lagrangian
We construct a non-stationary form of the Lagrangian of a material point with a known integral of motion and given monoparametric family of evolving orbits. An equation for non-stationary space symmetrical 'potential' function of such Lagrangian is given and this stands for the analog of S...
Saved in:
Published in: | Celestial mechanics and dynamical astronomy 1997-12, Vol.69 (4), p.347-355 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 355 |
container_issue | 4 |
container_start_page | 347 |
container_title | Celestial mechanics and dynamical astronomy |
container_volume | 69 |
creator | Omarov, T B Omarova, G T |
description | We construct a non-stationary form of the Lagrangian of a material point with a known integral of motion and given monoparametric family of evolving orbits. An equation for non-stationary space symmetrical 'potential' function of such Lagrangian is given and this stands for the analog of Szebehely's (1974) equation. As an application of the problem, an integrable equation from celestial mechanics of variable mass with use of non-perturbed orbits of evolving type is constructed. On its basis adiabatic invariants of non-stationary two-body problem containing a tangential force are found. |
doi_str_mv | 10.1023/A:1008221021467 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_760217893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>760217893</sourcerecordid><originalsourceid>FETCH-LOGICAL-p245t-af966a74b894aafc841c340a71bcf5019eede23f2f3c668dbbf7fbb7f37b3bd73</originalsourceid><addsrcrecordid>eNp90EtLAzEUBeAgCtbq2m1wo5vRvG_irtRXpajQui7JNGmnzCR1MlX67x3QlQtXlwMfB85F6JySa0oYvxndUkI0Y32gQsEBGlAJrDAC9CEaEMN4wYzUx-gk5w0hRBIjB-h5vvZ4Ej99mz1-a5OrfYNTwHf7aJuqzDikFs_2ufNNxl9Vt8YvKRazznZVirbd46ldtTauKhtP0VGwdfZnv3eI3h_u5-OnYvr6OBmPpsWWCdkVNhilLAinjbA2lFrQkgtigboySEKN90vPeGCBl0rppXMBgnMQODjulsCH6PKnd9umj53P3aKpcunr2kafdnkBqv8AaMN7efWvpAqoAA5E9PTiD92kXRv7HQsQUmnJuODfHipqzw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745685234</pqid></control><display><type>article</type><title>The Inverse Problem of Dynamics for Systems with Non-Stationary Lagrangian</title><source>Springer Nature</source><creator>Omarov, T B ; Omarova, G T</creator><creatorcontrib>Omarov, T B ; Omarova, G T</creatorcontrib><description>We construct a non-stationary form of the Lagrangian of a material point with a known integral of motion and given monoparametric family of evolving orbits. An equation for non-stationary space symmetrical 'potential' function of such Lagrangian is given and this stands for the analog of Szebehely's (1974) equation. As an application of the problem, an integrable equation from celestial mechanics of variable mass with use of non-perturbed orbits of evolving type is constructed. On its basis adiabatic invariants of non-stationary two-body problem containing a tangential force are found.</description><identifier>ISSN: 0923-2958</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1023/A:1008221021467</identifier><language>eng</language><publisher>Dordrecht: Springer Nature B.V</publisher><subject>Astronomy ; Celestial mechanics ; Dynamical systems ; Dynamics ; Invariants ; Inverse problems ; Mathematical analysis ; Orbits ; Stands ; Studies</subject><ispartof>Celestial mechanics and dynamical astronomy, 1997-12, Vol.69 (4), p.347-355</ispartof><rights>Kluwer Academic Publishers 1997</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Omarov, T B</creatorcontrib><creatorcontrib>Omarova, G T</creatorcontrib><title>The Inverse Problem of Dynamics for Systems with Non-Stationary Lagrangian</title><title>Celestial mechanics and dynamical astronomy</title><description>We construct a non-stationary form of the Lagrangian of a material point with a known integral of motion and given monoparametric family of evolving orbits. An equation for non-stationary space symmetrical 'potential' function of such Lagrangian is given and this stands for the analog of Szebehely's (1974) equation. As an application of the problem, an integrable equation from celestial mechanics of variable mass with use of non-perturbed orbits of evolving type is constructed. On its basis adiabatic invariants of non-stationary two-body problem containing a tangential force are found.</description><subject>Astronomy</subject><subject>Celestial mechanics</subject><subject>Dynamical systems</subject><subject>Dynamics</subject><subject>Invariants</subject><subject>Inverse problems</subject><subject>Mathematical analysis</subject><subject>Orbits</subject><subject>Stands</subject><subject>Studies</subject><issn>0923-2958</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNp90EtLAzEUBeAgCtbq2m1wo5vRvG_irtRXpajQui7JNGmnzCR1MlX67x3QlQtXlwMfB85F6JySa0oYvxndUkI0Y32gQsEBGlAJrDAC9CEaEMN4wYzUx-gk5w0hRBIjB-h5vvZ4Ej99mz1-a5OrfYNTwHf7aJuqzDikFs_2ufNNxl9Vt8YvKRazznZVirbd46ldtTauKhtP0VGwdfZnv3eI3h_u5-OnYvr6OBmPpsWWCdkVNhilLAinjbA2lFrQkgtigboySEKN90vPeGCBl0rppXMBgnMQODjulsCH6PKnd9umj53P3aKpcunr2kafdnkBqv8AaMN7efWvpAqoAA5E9PTiD92kXRv7HQsQUmnJuODfHipqzw</recordid><startdate>19971201</startdate><enddate>19971201</enddate><creator>Omarov, T B</creator><creator>Omarova, G T</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>19971201</creationdate><title>The Inverse Problem of Dynamics for Systems with Non-Stationary Lagrangian</title><author>Omarov, T B ; Omarova, G T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p245t-af966a74b894aafc841c340a71bcf5019eede23f2f3c668dbbf7fbb7f37b3bd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Astronomy</topic><topic>Celestial mechanics</topic><topic>Dynamical systems</topic><topic>Dynamics</topic><topic>Invariants</topic><topic>Inverse problems</topic><topic>Mathematical analysis</topic><topic>Orbits</topic><topic>Stands</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Omarov, T B</creatorcontrib><creatorcontrib>Omarova, G T</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Celestial mechanics and dynamical astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Omarov, T B</au><au>Omarova, G T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Inverse Problem of Dynamics for Systems with Non-Stationary Lagrangian</atitle><jtitle>Celestial mechanics and dynamical astronomy</jtitle><date>1997-12-01</date><risdate>1997</risdate><volume>69</volume><issue>4</issue><spage>347</spage><epage>355</epage><pages>347-355</pages><issn>0923-2958</issn><eissn>1572-9478</eissn><abstract>We construct a non-stationary form of the Lagrangian of a material point with a known integral of motion and given monoparametric family of evolving orbits. An equation for non-stationary space symmetrical 'potential' function of such Lagrangian is given and this stands for the analog of Szebehely's (1974) equation. As an application of the problem, an integrable equation from celestial mechanics of variable mass with use of non-perturbed orbits of evolving type is constructed. On its basis adiabatic invariants of non-stationary two-body problem containing a tangential force are found.</abstract><cop>Dordrecht</cop><pub>Springer Nature B.V</pub><doi>10.1023/A:1008221021467</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-2958 |
ispartof | Celestial mechanics and dynamical astronomy, 1997-12, Vol.69 (4), p.347-355 |
issn | 0923-2958 1572-9478 |
language | eng |
recordid | cdi_proquest_miscellaneous_760217893 |
source | Springer Nature |
subjects | Astronomy Celestial mechanics Dynamical systems Dynamics Invariants Inverse problems Mathematical analysis Orbits Stands Studies |
title | The Inverse Problem of Dynamics for Systems with Non-Stationary Lagrangian |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A19%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Inverse%20Problem%20of%20Dynamics%20for%20Systems%20with%20Non-Stationary%20Lagrangian&rft.jtitle=Celestial%20mechanics%20and%20dynamical%20astronomy&rft.au=Omarov,%20T%20B&rft.date=1997-12-01&rft.volume=69&rft.issue=4&rft.spage=347&rft.epage=355&rft.pages=347-355&rft.issn=0923-2958&rft.eissn=1572-9478&rft_id=info:doi/10.1023/A:1008221021467&rft_dat=%3Cproquest%3E760217893%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p245t-af966a74b894aafc841c340a71bcf5019eede23f2f3c668dbbf7fbb7f37b3bd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=745685234&rft_id=info:pmid/&rfr_iscdi=true |