Loading…

Construction of Nanocrystalline Film on Nanowire Array via Swelling Electrospun Polyvinylpyrrolidone-Hosted Nanofibers for Use in Dye-Sensitized Solar Cells

A 74% enrichment of the efficiency of ZnO nanowire (NW) dye-sensitized solar cells (DSSCs) is achieved by the addition of a novel light-scattering nanocrystalline film (nanofilm). The 100 nm thick nanofilm is derived from the polyvinylpyrrolidone-hosted SnO2/ZnO nanofibers electrospun on the top of...

Full description

Saved in:
Bibliographic Details
Published in:ACS nano 2010-10, Vol.4 (10), p.5679-5684
Main Authors: Wu, Jih-Jen, Chen, Yan-Ru, Liao, Wen-Pin, Wu, Chun-Te, Chen, Chuh-Yung
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A 74% enrichment of the efficiency of ZnO nanowire (NW) dye-sensitized solar cells (DSSCs) is achieved by the addition of a novel light-scattering nanocrystalline film (nanofilm). The 100 nm thick nanofilm is derived from the polyvinylpyrrolidone-hosted SnO2/ZnO nanofibers electrospun on the top of ZnO NW arrays via methanol vapor treatment followed by high-temperature calcination. Structural characterizations show that the film is composed of SnO2 and ZnO nanocrystals with a diameter of ∼10 nm. Short-circuit current, open-circuit voltage, and fill factor of the nanofilm/ZnO NW DSSCs are all superior to those of the ZnO NW DSSCs. The mechanism of photocurrent enhancement in the nanofilm/ZnO NW DSSCs has been investigated using optical modulation spectroscopy. Intensity modulation photocurrent spectroscopy (IMPS) measurements reveal that the dye-sensitized nanofilm does not contribute significant photocurrent in the nanofilm/ZnO NW DSSCs. The significant enhancement of the efficiency of the ZnO NW DSSCs is achieved by reflecting unabsorbed photons back into the NW anode using the novel light-scattering layer of nanofilm.
ISSN:1936-0851
1936-086X
DOI:10.1021/nn101282w