Loading…

Surfactant Effects on Fluid-Elastic Instabilities of Liquid-Lined Flexible Tubes: A Model of Airway Closure

A theoretical analysis is presented predicting the closure of small airways in the region of the terminal and respiratory bronchioles. The airways are modelled as thin elastic tubes, coated on the inside with a thin viscous liquid lining. This model produces closure by a coupled capillary-elastic in...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomechanical engineering 1993-08, Vol.115 (3), p.271-277
Main Authors: Halpern, D, Grotberg, J. B
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a427t-687cc21b35e2e268591f19df548a5acc0627490e96f5a34ddc3af5287034df5c3
cites
container_end_page 277
container_issue 3
container_start_page 271
container_title Journal of biomechanical engineering
container_volume 115
creator Halpern, D
Grotberg, J. B
description A theoretical analysis is presented predicting the closure of small airways in the region of the terminal and respiratory bronchioles. The airways are modelled as thin elastic tubes, coated on the inside with a thin viscous liquid lining. This model produces closure by a coupled capillary-elastic instability leading to liquid bridge formation, wall collapse or a combination of both. Nonlinear evolution equations for the film thickness, wall position and surfactant concentration are derived using an extended version of lubrication theory for thin liquid films. The positions of the air-liquid and wall-liquid interfaces and the surfactant concentration are perturbed about uniform states and the stability of these perturbations is examined by solving the governing equations numerically. Solutions show that there is a critical film thickness, dependent on fluid, wall and surfactant properties above which liquid bridges form. The critical film thickness, εc, decreases with increasing mean surface-tension or wall compliance. Surfactant increases εc by as much as 60 percent for physiological conditions, consistent with physiological observations. Airway closure occurs more rapidly with increasing film thickness and wall flexibility. The closure time for a surfactant rich interface can be approximately five times greater than an interface free of surfactant.
doi_str_mv 10.1115/1.2895486
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76054384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76054384</sourcerecordid><originalsourceid>FETCH-LOGICAL-a427t-687cc21b35e2e268591f19df548a5acc0627490e96f5a34ddc3af5287034df5c3</originalsourceid><addsrcrecordid>eNp90U1r3DAQBmBRWtLNx6HnUvChNPTgVKMvy7kty6YNbMmhyVnI8giUau1Esmnz76tlTY49DcP7MDAzhHwAegUA8htcMd1KodUbsgLJdF06eEtWFISuacPhPTnN-ZFSAC3oCTnRjAMItiK_f83JWzfZYaq23qObcjUO1U2cQ19vo81TcNXtkCfbhRimgCX21S48H_JdGLAvFv-GLmJ1P3eYr6t19XPsMR7cOqQ_9qXaxDHPCc_JO29jxoulnpGHm-395ke9u_t-u1nvaitYM9VKN84x6LhEhkxp2YKHtvdlPyutc1SxRrQUW-Wl5aLvHbe-LN3Q0njp-Bn5cpz7lMbnGfNk9iE7jNEOOM7ZNIpKwbUo8PL_UEglqVIH-fUoXRpzTujNUwp7m14MUHN4gQGzvKDYT8vUudtj_yqXm5f885Lb7Gz0yQ4u5FdWRrSC08I-HpnNezSP45yGcjTDW6mF4v8AWLuVEQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>745650664</pqid></control><display><type>article</type><title>Surfactant Effects on Fluid-Elastic Instabilities of Liquid-Lined Flexible Tubes: A Model of Airway Closure</title><source>ASME_美国机械工程师学会过刊</source><creator>Halpern, D ; Grotberg, J. B</creator><creatorcontrib>Halpern, D ; Grotberg, J. B</creatorcontrib><description>A theoretical analysis is presented predicting the closure of small airways in the region of the terminal and respiratory bronchioles. The airways are modelled as thin elastic tubes, coated on the inside with a thin viscous liquid lining. This model produces closure by a coupled capillary-elastic instability leading to liquid bridge formation, wall collapse or a combination of both. Nonlinear evolution equations for the film thickness, wall position and surfactant concentration are derived using an extended version of lubrication theory for thin liquid films. The positions of the air-liquid and wall-liquid interfaces and the surfactant concentration are perturbed about uniform states and the stability of these perturbations is examined by solving the governing equations numerically. Solutions show that there is a critical film thickness, dependent on fluid, wall and surfactant properties above which liquid bridges form. The critical film thickness, εc, decreases with increasing mean surface-tension or wall compliance. Surfactant increases εc by as much as 60 percent for physiological conditions, consistent with physiological observations. Airway closure occurs more rapidly with increasing film thickness and wall flexibility. The closure time for a surfactant rich interface can be approximately five times greater than an interface free of surfactant.</description><identifier>ISSN: 0148-0731</identifier><identifier>EISSN: 1528-8951</identifier><identifier>DOI: 10.1115/1.2895486</identifier><identifier>PMID: 8231142</identifier><identifier>CODEN: JBENDY</identifier><language>eng</language><publisher>New York, NY: ASME</publisher><subject>Adolescent ; Adult ; Age Factors ; Aged ; Air ; Air breathing ; Airway Obstruction - physiopathology ; Biological and medical sciences ; Bronchi - physiology ; Child ; Elasticity ; Fundamental and applied biological sciences. Psychology ; Humans ; Lung Compliance ; Lung Volume Measurements ; Mathematics ; Models, Biological ; Pulmonary Surfactants - physiology ; Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics ; Rheology ; Stress, Mechanical ; Surface Tension ; Time Factors ; Vertebrates: respiratory system ; Viscosity</subject><ispartof>Journal of biomechanical engineering, 1993-08, Vol.115 (3), p.271-277</ispartof><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a427t-687cc21b35e2e268591f19df548a5acc0627490e96f5a34ddc3af5287034df5c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,38519</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4869430$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8231142$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Halpern, D</creatorcontrib><creatorcontrib>Grotberg, J. B</creatorcontrib><title>Surfactant Effects on Fluid-Elastic Instabilities of Liquid-Lined Flexible Tubes: A Model of Airway Closure</title><title>Journal of biomechanical engineering</title><addtitle>J Biomech Eng</addtitle><addtitle>J Biomech Eng</addtitle><description>A theoretical analysis is presented predicting the closure of small airways in the region of the terminal and respiratory bronchioles. The airways are modelled as thin elastic tubes, coated on the inside with a thin viscous liquid lining. This model produces closure by a coupled capillary-elastic instability leading to liquid bridge formation, wall collapse or a combination of both. Nonlinear evolution equations for the film thickness, wall position and surfactant concentration are derived using an extended version of lubrication theory for thin liquid films. The positions of the air-liquid and wall-liquid interfaces and the surfactant concentration are perturbed about uniform states and the stability of these perturbations is examined by solving the governing equations numerically. Solutions show that there is a critical film thickness, dependent on fluid, wall and surfactant properties above which liquid bridges form. The critical film thickness, εc, decreases with increasing mean surface-tension or wall compliance. Surfactant increases εc by as much as 60 percent for physiological conditions, consistent with physiological observations. Airway closure occurs more rapidly with increasing film thickness and wall flexibility. The closure time for a surfactant rich interface can be approximately five times greater than an interface free of surfactant.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Age Factors</subject><subject>Aged</subject><subject>Air</subject><subject>Air breathing</subject><subject>Airway Obstruction - physiopathology</subject><subject>Biological and medical sciences</subject><subject>Bronchi - physiology</subject><subject>Child</subject><subject>Elasticity</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Humans</subject><subject>Lung Compliance</subject><subject>Lung Volume Measurements</subject><subject>Mathematics</subject><subject>Models, Biological</subject><subject>Pulmonary Surfactants - physiology</subject><subject>Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics</subject><subject>Rheology</subject><subject>Stress, Mechanical</subject><subject>Surface Tension</subject><subject>Time Factors</subject><subject>Vertebrates: respiratory system</subject><subject>Viscosity</subject><issn>0148-0731</issn><issn>1528-8951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNp90U1r3DAQBmBRWtLNx6HnUvChNPTgVKMvy7kty6YNbMmhyVnI8giUau1Esmnz76tlTY49DcP7MDAzhHwAegUA8htcMd1KodUbsgLJdF06eEtWFISuacPhPTnN-ZFSAC3oCTnRjAMItiK_f83JWzfZYaq23qObcjUO1U2cQ19vo81TcNXtkCfbhRimgCX21S48H_JdGLAvFv-GLmJ1P3eYr6t19XPsMR7cOqQ_9qXaxDHPCc_JO29jxoulnpGHm-395ke9u_t-u1nvaitYM9VKN84x6LhEhkxp2YKHtvdlPyutc1SxRrQUW-Wl5aLvHbe-LN3Q0njp-Bn5cpz7lMbnGfNk9iE7jNEOOM7ZNIpKwbUo8PL_UEglqVIH-fUoXRpzTujNUwp7m14MUHN4gQGzvKDYT8vUudtj_yqXm5f885Lb7Gz0yQ4u5FdWRrSC08I-HpnNezSP45yGcjTDW6mF4v8AWLuVEQ</recordid><startdate>19930801</startdate><enddate>19930801</enddate><creator>Halpern, D</creator><creator>Grotberg, J. B</creator><general>ASME</general><general>American Society of Mechanical Engineers</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>19930801</creationdate><title>Surfactant Effects on Fluid-Elastic Instabilities of Liquid-Lined Flexible Tubes: A Model of Airway Closure</title><author>Halpern, D ; Grotberg, J. B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a427t-687cc21b35e2e268591f19df548a5acc0627490e96f5a34ddc3af5287034df5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Age Factors</topic><topic>Aged</topic><topic>Air</topic><topic>Air breathing</topic><topic>Airway Obstruction - physiopathology</topic><topic>Biological and medical sciences</topic><topic>Bronchi - physiology</topic><topic>Child</topic><topic>Elasticity</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Humans</topic><topic>Lung Compliance</topic><topic>Lung Volume Measurements</topic><topic>Mathematics</topic><topic>Models, Biological</topic><topic>Pulmonary Surfactants - physiology</topic><topic>Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics</topic><topic>Rheology</topic><topic>Stress, Mechanical</topic><topic>Surface Tension</topic><topic>Time Factors</topic><topic>Vertebrates: respiratory system</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halpern, D</creatorcontrib><creatorcontrib>Grotberg, J. B</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of biomechanical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halpern, D</au><au>Grotberg, J. B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surfactant Effects on Fluid-Elastic Instabilities of Liquid-Lined Flexible Tubes: A Model of Airway Closure</atitle><jtitle>Journal of biomechanical engineering</jtitle><stitle>J Biomech Eng</stitle><addtitle>J Biomech Eng</addtitle><date>1993-08-01</date><risdate>1993</risdate><volume>115</volume><issue>3</issue><spage>271</spage><epage>277</epage><pages>271-277</pages><issn>0148-0731</issn><eissn>1528-8951</eissn><coden>JBENDY</coden><abstract>A theoretical analysis is presented predicting the closure of small airways in the region of the terminal and respiratory bronchioles. The airways are modelled as thin elastic tubes, coated on the inside with a thin viscous liquid lining. This model produces closure by a coupled capillary-elastic instability leading to liquid bridge formation, wall collapse or a combination of both. Nonlinear evolution equations for the film thickness, wall position and surfactant concentration are derived using an extended version of lubrication theory for thin liquid films. The positions of the air-liquid and wall-liquid interfaces and the surfactant concentration are perturbed about uniform states and the stability of these perturbations is examined by solving the governing equations numerically. Solutions show that there is a critical film thickness, dependent on fluid, wall and surfactant properties above which liquid bridges form. The critical film thickness, εc, decreases with increasing mean surface-tension or wall compliance. Surfactant increases εc by as much as 60 percent for physiological conditions, consistent with physiological observations. Airway closure occurs more rapidly with increasing film thickness and wall flexibility. The closure time for a surfactant rich interface can be approximately five times greater than an interface free of surfactant.</abstract><cop>New York, NY</cop><pub>ASME</pub><pmid>8231142</pmid><doi>10.1115/1.2895486</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0148-0731
ispartof Journal of biomechanical engineering, 1993-08, Vol.115 (3), p.271-277
issn 0148-0731
1528-8951
language eng
recordid cdi_proquest_miscellaneous_76054384
source ASME_美国机械工程师学会过刊
subjects Adolescent
Adult
Age Factors
Aged
Air
Air breathing
Airway Obstruction - physiopathology
Biological and medical sciences
Bronchi - physiology
Child
Elasticity
Fundamental and applied biological sciences. Psychology
Humans
Lung Compliance
Lung Volume Measurements
Mathematics
Models, Biological
Pulmonary Surfactants - physiology
Respiratory system: anatomy, metabolism, gas exchange, ventilatory mechanics, respiratory hemodynamics
Rheology
Stress, Mechanical
Surface Tension
Time Factors
Vertebrates: respiratory system
Viscosity
title Surfactant Effects on Fluid-Elastic Instabilities of Liquid-Lined Flexible Tubes: A Model of Airway Closure
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T06%3A30%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surfactant%20Effects%20on%20Fluid-Elastic%20Instabilities%20of%20Liquid-Lined%20Flexible%20Tubes:%20A%20Model%20of%20Airway%20Closure&rft.jtitle=Journal%20of%20biomechanical%20engineering&rft.au=Halpern,%20D&rft.date=1993-08-01&rft.volume=115&rft.issue=3&rft.spage=271&rft.epage=277&rft.pages=271-277&rft.issn=0148-0731&rft.eissn=1528-8951&rft.coden=JBENDY&rft_id=info:doi/10.1115/1.2895486&rft_dat=%3Cproquest_cross%3E76054384%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a427t-687cc21b35e2e268591f19df548a5acc0627490e96f5a34ddc3af5287034df5c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=745650664&rft_id=info:pmid/8231142&rfr_iscdi=true