Loading…

Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo

To address the possibility that electron transport is a biologically significant source of superoxide anion (O2-.) during exposure to hyperoxia in vivo, we constructed Saccharomyces cerevisiae strains with selective disruptions in the gene encoding the mitochondrial manganese-containing superoxide d...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1993-12, Vol.268 (35), p.26699-26703
Main Authors: Guidot, D M, McCord, J M, Wright, R M, Repine, J E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4175-550af54d535922ac0cb1939afe393fec12df2ddcf55506dc12919642499b9aeb3
cites cdi_FETCH-LOGICAL-c4175-550af54d535922ac0cb1939afe393fec12df2ddcf55506dc12919642499b9aeb3
container_end_page 26703
container_issue 35
container_start_page 26699
container_title The Journal of biological chemistry
container_volume 268
creator Guidot, D M
McCord, J M
Wright, R M
Repine, J E
description To address the possibility that electron transport is a biologically significant source of superoxide anion (O2-.) during exposure to hyperoxia in vivo, we constructed Saccharomyces cerevisiae strains with selective disruptions in the gene encoding the mitochondrial manganese-containing superoxide dismutase (Mn-SOD) and/or genes encoding proteins critical for complexes in electron transport. We hypothesized that complete absence of electron transport would restore growth in hyperoxia to a Mn-SOD-deficient yeast. We found that yeast deficient in Mn-SOD activity failed to grow normally in hyperoxia (95% O2, 5% CO2). In contrast, Mn-SOD-deficient yeast with complete absence of electron transport (the Rho 0 state) grew normally in hyperoxia. By comparison, Mn-SOD-deficient yeast which were deficient only in cytochrome-c-oxidase, the terminal step in electron transport, had only partially restored growth in hyperoxia. Our results indicate that electron transport is a major source of O2-. in vivo, and that the principal site of this O2-. production is proximal to the cytochrome-c-oxidase complex.
doi_str_mv 10.1016/S0021-9258(19)74369-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76119101</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819743695</els_id><sourcerecordid>76119101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4175-550af54d535922ac0cb1939afe393fec12df2ddcf55506dc12919642499b9aeb3</originalsourceid><addsrcrecordid>eNqFUU1r3DAUFKUl3ab9CQEdSkkOTiXL8lqnEkL6AYFC00JvQpae1gprayvJTvb39o9UXi-hh0J10EN6M_OGNwidUXJJCa3f3xFS0kKUvDmn4mJdsVoU_BlaUdKwgnH68zlaPUFeolcx3pN8KkFP0ElTctaQaoV-X7URBg3YWwxb0Cn4AaeghrjzIeHzb53HBMekElzgADH5fOFN8A-pmzkK92rYqAEiFHHcQfCPzgA2LvZjUvnTgHXawZDwndK6U8H3e50lNASYXHQKsBtwt1-o6hLfTFlgdmR9-JclFQ9D73M3-jEs1v8avYEBgkouk7Lw5Cb_Gr2wahvhzbGeoh8fb75ffy5uv376cn11W-iKrnnBOVGWV4YzLspSaaJbKphQFphgFjQtjS2N0ZZnZG3yW1BRV2UlRCsUtOwUvVt0d8H_GvOuZO-ihu02r8ePUa5rSkXOLgP5AtTBxxjAyl1wvQp7SYmcw5WHcOWcnKRCHsKVPPPOjgPGtgfzxDqmmftvl37nNt2DCyBb53UHvSzrRjKeSy1Ehn1YYJCXMTkIMs4JaTCZopM03v3HyB-5IsZ2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76119101</pqid></control><display><type>article</type><title>Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo</title><source>ScienceDirect Journals</source><creator>Guidot, D M ; McCord, J M ; Wright, R M ; Repine, J E</creator><creatorcontrib>Guidot, D M ; McCord, J M ; Wright, R M ; Repine, J E</creatorcontrib><description>To address the possibility that electron transport is a biologically significant source of superoxide anion (O2-.) during exposure to hyperoxia in vivo, we constructed Saccharomyces cerevisiae strains with selective disruptions in the gene encoding the mitochondrial manganese-containing superoxide dismutase (Mn-SOD) and/or genes encoding proteins critical for complexes in electron transport. We hypothesized that complete absence of electron transport would restore growth in hyperoxia to a Mn-SOD-deficient yeast. We found that yeast deficient in Mn-SOD activity failed to grow normally in hyperoxia (95% O2, 5% CO2). In contrast, Mn-SOD-deficient yeast with complete absence of electron transport (the Rho 0 state) grew normally in hyperoxia. By comparison, Mn-SOD-deficient yeast which were deficient only in cytochrome-c-oxidase, the terminal step in electron transport, had only partially restored growth in hyperoxia. Our results indicate that electron transport is a major source of O2-. in vivo, and that the principal site of this O2-. production is proximal to the cytochrome-c-oxidase complex.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1016/S0021-9258(19)74369-5</identifier><identifier>PMID: 8253804</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Electron Transport ; Mitochondria - metabolism ; Oxygen - metabolism ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae - metabolism ; Superoxide Dismutase - genetics ; Superoxide Dismutase - metabolism</subject><ispartof>The Journal of biological chemistry, 1993-12, Vol.268 (35), p.26699-26703</ispartof><rights>1993 © 1993 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4175-550af54d535922ac0cb1939afe393fec12df2ddcf55506dc12919642499b9aeb3</citedby><cites>FETCH-LOGICAL-c4175-550af54d535922ac0cb1939afe393fec12df2ddcf55506dc12919642499b9aeb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021925819743695$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8253804$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guidot, D M</creatorcontrib><creatorcontrib>McCord, J M</creatorcontrib><creatorcontrib>Wright, R M</creatorcontrib><creatorcontrib>Repine, J E</creatorcontrib><title>Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>To address the possibility that electron transport is a biologically significant source of superoxide anion (O2-.) during exposure to hyperoxia in vivo, we constructed Saccharomyces cerevisiae strains with selective disruptions in the gene encoding the mitochondrial manganese-containing superoxide dismutase (Mn-SOD) and/or genes encoding proteins critical for complexes in electron transport. We hypothesized that complete absence of electron transport would restore growth in hyperoxia to a Mn-SOD-deficient yeast. We found that yeast deficient in Mn-SOD activity failed to grow normally in hyperoxia (95% O2, 5% CO2). In contrast, Mn-SOD-deficient yeast with complete absence of electron transport (the Rho 0 state) grew normally in hyperoxia. By comparison, Mn-SOD-deficient yeast which were deficient only in cytochrome-c-oxidase, the terminal step in electron transport, had only partially restored growth in hyperoxia. Our results indicate that electron transport is a major source of O2-. in vivo, and that the principal site of this O2-. production is proximal to the cytochrome-c-oxidase complex.</description><subject>Electron Transport</subject><subject>Mitochondria - metabolism</subject><subject>Oxygen - metabolism</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Superoxide Dismutase - genetics</subject><subject>Superoxide Dismutase - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFUU1r3DAUFKUl3ab9CQEdSkkOTiXL8lqnEkL6AYFC00JvQpae1gprayvJTvb39o9UXi-hh0J10EN6M_OGNwidUXJJCa3f3xFS0kKUvDmn4mJdsVoU_BlaUdKwgnH68zlaPUFeolcx3pN8KkFP0ElTctaQaoV-X7URBg3YWwxb0Cn4AaeghrjzIeHzb53HBMekElzgADH5fOFN8A-pmzkK92rYqAEiFHHcQfCPzgA2LvZjUvnTgHXawZDwndK6U8H3e50lNASYXHQKsBtwt1-o6hLfTFlgdmR9-JclFQ9D73M3-jEs1v8avYEBgkouk7Lw5Cb_Gr2wahvhzbGeoh8fb75ffy5uv376cn11W-iKrnnBOVGWV4YzLspSaaJbKphQFphgFjQtjS2N0ZZnZG3yW1BRV2UlRCsUtOwUvVt0d8H_GvOuZO-ihu02r8ePUa5rSkXOLgP5AtTBxxjAyl1wvQp7SYmcw5WHcOWcnKRCHsKVPPPOjgPGtgfzxDqmmftvl37nNt2DCyBb53UHvSzrRjKeSy1Ehn1YYJCXMTkIMs4JaTCZopM03v3HyB-5IsZ2</recordid><startdate>19931215</startdate><enddate>19931215</enddate><creator>Guidot, D M</creator><creator>McCord, J M</creator><creator>Wright, R M</creator><creator>Repine, J E</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19931215</creationdate><title>Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo</title><author>Guidot, D M ; McCord, J M ; Wright, R M ; Repine, J E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4175-550af54d535922ac0cb1939afe393fec12df2ddcf55506dc12919642499b9aeb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Electron Transport</topic><topic>Mitochondria - metabolism</topic><topic>Oxygen - metabolism</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Superoxide Dismutase - genetics</topic><topic>Superoxide Dismutase - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guidot, D M</creatorcontrib><creatorcontrib>McCord, J M</creatorcontrib><creatorcontrib>Wright, R M</creatorcontrib><creatorcontrib>Repine, J E</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guidot, D M</au><au>McCord, J M</au><au>Wright, R M</au><au>Repine, J E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>1993-12-15</date><risdate>1993</risdate><volume>268</volume><issue>35</issue><spage>26699</spage><epage>26703</epage><pages>26699-26703</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>To address the possibility that electron transport is a biologically significant source of superoxide anion (O2-.) during exposure to hyperoxia in vivo, we constructed Saccharomyces cerevisiae strains with selective disruptions in the gene encoding the mitochondrial manganese-containing superoxide dismutase (Mn-SOD) and/or genes encoding proteins critical for complexes in electron transport. We hypothesized that complete absence of electron transport would restore growth in hyperoxia to a Mn-SOD-deficient yeast. We found that yeast deficient in Mn-SOD activity failed to grow normally in hyperoxia (95% O2, 5% CO2). In contrast, Mn-SOD-deficient yeast with complete absence of electron transport (the Rho 0 state) grew normally in hyperoxia. By comparison, Mn-SOD-deficient yeast which were deficient only in cytochrome-c-oxidase, the terminal step in electron transport, had only partially restored growth in hyperoxia. Our results indicate that electron transport is a major source of O2-. in vivo, and that the principal site of this O2-. production is proximal to the cytochrome-c-oxidase complex.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>8253804</pmid><doi>10.1016/S0021-9258(19)74369-5</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1993-12, Vol.268 (35), p.26699-26703
issn 0021-9258
1083-351X
language eng
recordid cdi_proquest_miscellaneous_76119101
source ScienceDirect Journals
subjects Electron Transport
Mitochondria - metabolism
Oxygen - metabolism
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Superoxide Dismutase - genetics
Superoxide Dismutase - metabolism
title Absence of electron transport (Rho 0 state) restores growth of a manganese-superoxide dismutase-deficient Saccharomyces cerevisiae in hyperoxia. Evidence for electron transport as a major source of superoxide generation in vivo
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T18%3A02%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Absence%20of%20electron%20transport%20(Rho%200%20state)%20restores%20growth%20of%20a%20manganese-superoxide%20dismutase-deficient%20Saccharomyces%20cerevisiae%20in%20hyperoxia.%20Evidence%20for%20electron%20transport%20as%20a%20major%20source%20of%20superoxide%20generation%20in%20vivo&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Guidot,%20D%20M&rft.date=1993-12-15&rft.volume=268&rft.issue=35&rft.spage=26699&rft.epage=26703&rft.pages=26699-26703&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1016/S0021-9258(19)74369-5&rft_dat=%3Cproquest_cross%3E76119101%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4175-550af54d535922ac0cb1939afe393fec12df2ddcf55506dc12919642499b9aeb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=76119101&rft_id=info:pmid/8253804&rfr_iscdi=true