Loading…
Origin recognition complex (ORC) in transcriptional silencing and DNA replication in S. cerevisiae
In Saccharomyces cerevisiae, the HMR-E silencer blocks site-specific interactions between proteins and their recognition sequences in the vicinity of the silencer. Silencer function is correlated with the firing of an origin of replication at HMR-E. An essential gene with a role in transcriptional s...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 1993-12, Vol.262 (5141), p.1838-1844 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In Saccharomyces cerevisiae, the HMR-E silencer blocks site-specific interactions between proteins and their recognition sequences in the vicinity of the silencer. Silencer function is correlated with the firing of an origin of replication at HMR-E. An essential gene with a role in transcriptional silencing was identified by means of a screen for mutations affecting expression of HMR. This gene, known as ORC2, was shown to encode a component of the origin recognition complex that binds yeast origins of replication. A temperature-sensitive mutation in ORC2 disrupted silencing in cells grown at the permissive temperature. At the restrictive temperature, the orc2-1 mutation caused cell cycle arrest at a point in the cell cycle indicative of blocks in DNA replication. The orc2-1 mutation also resulted in the enhanced mitotic loss of a plasmid, suggestive of a defect in replication. These results provide strong evidence for an in vivo role of ORC in both chromosomal replication and silencing, and provide a link between the mechanism of silencing and DNA replication |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.8266071 |