Loading…

In vivo secretory responses of submandibular glands in streptozotocin-diabetic rats to sympathetic and parasympathetic nerve stimulation

Submandibular gland responses to sympathetic and parasympathetic nerve stimulation were studied in streptozotocin-diabetic rats. Morphologically, the acinar cells in control glands were relatively uniform in size and contained electron-lucent granules. The granular ducts were distinguished by the pr...

Full description

Saved in:
Bibliographic Details
Published in:Cell and tissue research 1993-12, Vol.274 (3), p.559-566
Main Authors: ANDERSON, L. C, GARRETT, J. R, SULEIMAN, A. H, PROCTOR, G. B, KA-MING CHAN, HARTLEY, R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Submandibular gland responses to sympathetic and parasympathetic nerve stimulation were studied in streptozotocin-diabetic rats. Morphologically, the acinar cells in control glands were relatively uniform in size and contained electron-lucent granules. The granular ducts were distinguished by the presence of electron-dense granules. With the exception of intracellular lipid droplets and the presence of a few autophagosomes in diabetic glands, no consistent differences in acinar cell structure were observed. In contrast, the diameter of the granular ducts and the granule content of their cells were less in diabetic glands. At 3 weeks sympathetic flow rate, salivary protein concentration, and total protein output were unaffected by diabetes. Sympathetic flow rate was greater at 3 months, and the concentration of protein in the saliva was lower. In 6-month diabetic rats flow rate remained increased, but protein concentration and total protein output were reduced. The decrease in salivary protein concentration at 3 and 6 months was accompanied by a reduction in secretory granule release from acinar and granular duct cells. No consistent differences in flow rate, protein concentration, protein output, or secretory granule release were observed following parasympathetic stimulation. We conclude that the effects of diabetes on nerve-stimulated flow rate and protein release depend on the duration of diabetes and the type of stimulation, and are independent of one another.
ISSN:0302-766X
1432-0878
DOI:10.1007/bf00314554