Loading…

Regulation of protein kinase and its regulatory subunits during skeletal myogenesis

Rat skeletal myoblasts contain two cytosolic cAMP-dependent protein kinases, types I and II. Photoaffinity labeling with 8-azido-cAMP reveals the presence of regulatory subunits of Mr = 52,000, 47,000, and 36,000. The Mr = 52,000 and 47,000 subunits are very likely RII and RI, respectively, while th...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1985-07, Vol.260 (13), p.8002-8007
Main Authors: Rogers, J E, Narindrasorasak, S, Cates, G A, Sanwal, B D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rat skeletal myoblasts contain two cytosolic cAMP-dependent protein kinases, types I and II. Photoaffinity labeling with 8-azido-cAMP reveals the presence of regulatory subunits of Mr = 52,000, 47,000, and 36,000. The Mr = 52,000 and 47,000 subunits are very likely RII and RI, respectively, while the Mr = 36,000 subunit appears to be a proteolytic product of RI, as judged by its cross-reactivity to anti-RI antiserum. The total protein kinase activity increases about 3-fold during the fusion of myoblasts. In parallel with this increase, the concentration of RI subunit also increases, while the levels of RII remain unchanged. Myoblast mutants which lack the capability to differentiate both biochemically and morphologically also lack the ability to increase the concentration of RI subunit. This ability is restored in complementing somatic hybrids which regain the capability to differentiate.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(17)39554-6