Loading…
Use of nitrogen-15 and deuterium isotope effects to determine the chemical mechanism of phenylalanine ammonia-lyase
Phenylalanine ammonia-lyase has been shown to catalyze the elimination of ammonia from the slow alternate substrate 3-(1,4-cyclohexadienyl)alanine by an E1 cb mechanism with a carbanion intermediate. This conclusion resulted from comparison of 15N isotope effects with deuterated (0.9921) and unlabel...
Saved in:
Published in: | Biochemistry (Easton) 1985-06, Vol.24 (12), p.2959-2967 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Phenylalanine ammonia-lyase has been shown to catalyze the elimination of ammonia from the slow alternate substrate 3-(1,4-cyclohexadienyl)alanine by an E1 cb mechanism with a carbanion intermediate. This conclusion resulted from comparison of 15N isotope effects with deuterated (0.9921) and unlabeled substrates (1.0047), and a deuterium isotope effect of 2.0 from dideuteration at C-3, with the equations for concerted, carbanion, and carbonium ion mechanisms. The 15N equilibrium isotope effect on the addition of the substrate to the dehydroalanine prosthetic group on the enzyme is 0.979, while the kinetic 15N isotope effect on the reverse of this step is 1.03-1.04 and the intrinsic deuterium isotope effect on proton removal is in the range 4-6. Isotope effects with phenylalanine itself are small (15N ones of 1.0021 and 1.0010 when unlabeled or 3-dideuterated and a deuterium isotope effect of 1.15) but are consistent with the same mechanism with drastically increased commitments, including a sizable external one (i.e., phenylalanine is sticky). pH profiles show that the amino group of the substrate must be unprotonated to react but that a group on the enzyme with a pK of 9 must be protonated, possibly to catalyze addition of the substrate to dehydroalanine. Incorrectly protonated enzyme-substrate complexes do not form. Equilibrium 15N isotope effects are 1.016 for the deprotonation of phenylalanine or its cyclohexadienyl analogue, 1.0192 for deprotonation of NH4+, 1.0163 for the conversion of the monoanion of phenylalanine to NH3, and 1.0138 for the conversion of the monoanion of aspartate to NH4+. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi00333a023 |