Loading…

Genetic variability in tolerance to copper contamination in a herbivorous marine invertebrate

Anthropogenic stresses such as metal contamination can have profound ecological impacts in a wide range of habitats. Reduced survival of organisms in contaminated habitats has the potential to result in the evolution of genotypes tolerant to deleterious contaminants. Local adaptation to contaminatio...

Full description

Saved in:
Bibliographic Details
Published in:Aquatic toxicology 2010-08, Vol.99 (1), p.10-16
Main Authors: Pease, Ceiwen J., Johnston, Emma L., Poore, Alistair G.B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Anthropogenic stresses such as metal contamination can have profound ecological impacts in a wide range of habitats. Reduced survival of organisms in contaminated habitats has the potential to result in the evolution of genotypes tolerant to deleterious contaminants. Local adaptation to contamination requires directional selection, genetic variation in traits relating to tolerance, spatial variability in exposure to the contaminant and limited gene flow between populations. This study assesses variation in tolerance in the herbivorous marine invertebrate Peramphithoe parmerong whose algal diets in Sydney Harbour readily accumulate the metal copper. A quantitative genetics approach (a full-sib, split family design) was used to quantify variation among families in survival on the contaminated diet. A significant genotype-by-environment interaction in offspring survival between the copper contaminated and uncontaminated diet treatments revealed variation in tolerance to copper by P. parmerong. Amphipods that survived 30 days of exposure to copper contaminated diets were slightly smaller and ate less algae than those reared on uncontaminated food. This reflects an additional sub-lethal effect associated with the consumption of contaminated algae. However, there was no evidence of acclimation to contaminated diets, nor a cost of reduced feeding for those genotypes with increased tolerance. This study provides strong evidence for the potential of a marine invertebrate to evolve tolerance to contaminants found in their diet.
ISSN:0166-445X
1879-1514
DOI:10.1016/j.aquatox.2010.03.014