Loading…
Advanced oxidation of methyl-tertiary butyl ether: pilot study findings and full-scale implications
The high solubility and low volatility of methyl-tertiary butyl ether (MTBE) makes it difficult to treat when present at low levels (as in most groundwater supplies) using established technologies such as air stripping and activated carbon. Unlike the established transfer technologies (e.g., air str...
Saved in:
Published in: | Aqua (London) 2008-09, Vol.57 (6), p.403-418 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The high solubility and low volatility of methyl-tertiary butyl ether (MTBE) makes it difficult to treat when present at low levels (as in most groundwater supplies) using established technologies such as air stripping and activated carbon. Unlike the established transfer technologies (e.g., air stripping, activated carbon adsorption), advanced oxidation by ultraviolet (UV) light could potentially destroys MTBE and its by-products. As part of this study, extensive pilot and bench scale evaluation was performed to understand the effectiveness of MTBE and its by-products [e.g., tertiary butyl alcohol (TBA) and tertiary butyl formate (TBF)] removal using UV/peroxide in ground and surface waters. The water quality matrix evaluated the impact of MTBE oxidation in the presence of other UV light absorbing compounds (e.g., nitrate) and radical scavengers (e.g., organics). These UV oxidation tests were conducted using both the medium-pressure (MP-UV) and low-pressure, high-output (LP-UV) lamps. Water quality impacts were also summarized using the energy requirement calculations. Based on the information gleaned from pilot testing, authors developed conceptual-level design and operational criteria. Conceptual-level capital and operational costs for full-scale systems were developed and presented. |
---|---|
ISSN: | 0003-7214 1606-9935 1605-3974 1365-2087 |
DOI: | 10.2166/aqua.2008.094 |