Loading…
Sulphidic Mediterranean surface waters during Pliocene sapropel formation
Sapropels-organic-matter rich layers-are common in Neogene sediments of the eastern Mediterranean Sea. The formation of these layers has been attributed to climate-related increases in organic-matter production and increased organic-matter preservation due to oxygen depletion in more stagnant bottom...
Saved in:
Published in: | Nature (London) 1999-01, Vol.397 (6715), p.146-149 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sapropels-organic-matter rich layers-are common in Neogene sediments of the eastern Mediterranean Sea. The formation of these layers has been attributed to climate-related increases in organic-matter production and increased organic-matter preservation due to oxygen depletion in more stagnant bottom waters,. Here we report that eastern Mediterranean Pliocene sapropels contain molecular fossils of a compound (isorenieratene) known to be synthesized by photosynthetic green sulphur bacteria, suggesting that sulphidic (euxinic)-and therefore anoxic-conditions prevailed in the photic zone of the water column. These sapropels also have a high trace-metal content, which is probably due to the efficient scavenging of these metals by precipitating sulphides in a euxinic water column. The abundance and sulphur-isotope composition of pyrite are consistent with iron sulphide formation in the water column. We conclude that basin-wide water-column euxinia occurred over substantial periods during Pliocene sapropel formation in the eastern Mediterranean Sea, and that the ultimate degradation of the increased organic-matter production was strongly influential in generating and sustaining the euxinic conditions. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/16441 |