Loading…
Imaging of P‐glycoprotein–mediated pharmacoresistance in the hippocampus: Proof‐of‐concept in a chronic rat model of temporal lobe epilepsy
Summary Purpose: Based on experimental findings, overexpression of P‐glycoprotein at the blood–brain barrier has been suggested to be a contributor to pharmacoresistance of the epileptic brain. We test a technique for evaluation of interindividual differences of elevated transporter function, throu...
Saved in:
Published in: | Epilepsia (Copenhagen) 2010-09, Vol.51 (9), p.1780-1790 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4801-5095effe06a60a7f4304a24eb0c3a5f41c118d25e6119c798992501517d32f623 |
---|---|
cites | cdi_FETCH-LOGICAL-c4801-5095effe06a60a7f4304a24eb0c3a5f41c118d25e6119c798992501517d32f623 |
container_end_page | 1790 |
container_issue | 9 |
container_start_page | 1780 |
container_title | Epilepsia (Copenhagen) |
container_volume | 51 |
creator | Bartmann, Hero Fuest, Christina La Fougere, Christian Xiong, Guoming Just, Theresa Schlichtiger, Juli Winter, Petra Böning, Guido Wängler, Björn Pekcec, Anton Soerensen, Jonna Bartenstein, Peter Cumming, Paul Potschka, Heidrun |
description | Summary
Purpose: Based on experimental findings, overexpression of P‐glycoprotein at the blood–brain barrier has been suggested to be a contributor to pharmacoresistance of the epileptic brain. We test a technique for evaluation of interindividual differences of elevated transporter function, through microPET analysis of the impact of the P‐glycoprotein modulator tariquidar. The preclinical study is intended for eventual translation to clinical research of patients with pharmacoresistant seizure disorders.
Methods: We made a microPET evaluation of the effects of tariquidar on the brain kinetics of the P‐glycoprotein substrate [18F]MPPF in a rat model with spontaneous recurrent seizures, in which it has previously been demonstrated that phenobarbital nonresponders exhibit higher P‐glycoprotein expression than do phenobarbital responders.
Results: Mean baseline parametric maps of the [18F]MPPF unidirectional blood–brain clearance (K1; ml/g per min) and the efflux rate constant (k2; per min) did not differ between the nonresponder and responder group. Tariquidar pretreatment increased the magnitude of [18F]MPPF K1 in hippocampus by a mean of 142% in the nonresponders, which significantly exceeded the 92% increase observed in the responder group. The same treatment decreased the mean magnitude of [18F]MPPF k2 in hippocampus by 27% in nonresponders, without comparable effects in the responder group.
Discussion: These results constitute a proof‐of‐concept for a novel imaging approach to evaluate blood–brain barrier P‐glycoprotein function in animals. By extension, [18F]MPPF positron emission tomography (PET) with tariquidar pretreatment may be amenable for clinical applications exploring further the relevance of P‐glycoprotein overexpression, and for enabling the rational design of pharmacotherapy according to individual differences in P‐glycoprotein expression. |
doi_str_mv | 10.1111/j.1528-1167.2010.02671.x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_762272381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754004409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4801-5095effe06a60a7f4304a24eb0c3a5f41c118d25e6119c798992501517d32f623</originalsourceid><addsrcrecordid>eNqNkUGPEyEUgInRuHX1LxguxtN0HzDAjIkHs1ndJpvYg54JpdDSzAwI07i97U8w2X-4v0RmW9ejcgAC33sP3ocQJjAnZVzs5oTTpiJEyDmFcgpUSDK_fYZmTxfP0QyAsKrlDZyhVznvAEAKyV6iMwqCMWBihu4Xvd74YYODw8uHu1-b7mBCTGG0fni4u-_t2uvRrnHc6tRrE5LNPo96MBb7AY9bi7c-xmB0H_f5A16mEFxJ8ziZULA4TqDGZpvC4A1OesR9WNtuqjjaPoakO9yFlcU2-s7GfHiNXjjdZfvmtJ6j75-vvl1eVzdfvywuP91Upm6AVBxabp2zILQALV3NoNa0tiswTHNXE0NIs6bcCkJaI9umbSkHwolcM-oEZefo_TFv-e-Pvc2j6n02tuv0YMM-KykolZQ15N8krwHqGtpCNkfSpJBzsk7F5HudDoqAmtypnZoUqUmRmtypR3fqtoS-PRXZr0rfnwL_yCrAuxOgs9GdS0WDz385RuuWcVm4j0fuZ-nn4b8foK6Wi2nHfgPYqbnH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>754004409</pqid></control><display><type>article</type><title>Imaging of P‐glycoprotein–mediated pharmacoresistance in the hippocampus: Proof‐of‐concept in a chronic rat model of temporal lobe epilepsy</title><source>Wiley</source><creator>Bartmann, Hero ; Fuest, Christina ; La Fougere, Christian ; Xiong, Guoming ; Just, Theresa ; Schlichtiger, Juli ; Winter, Petra ; Böning, Guido ; Wängler, Björn ; Pekcec, Anton ; Soerensen, Jonna ; Bartenstein, Peter ; Cumming, Paul ; Potschka, Heidrun</creator><creatorcontrib>Bartmann, Hero ; Fuest, Christina ; La Fougere, Christian ; Xiong, Guoming ; Just, Theresa ; Schlichtiger, Juli ; Winter, Petra ; Böning, Guido ; Wängler, Björn ; Pekcec, Anton ; Soerensen, Jonna ; Bartenstein, Peter ; Cumming, Paul ; Potschka, Heidrun</creatorcontrib><description>Summary
Purpose: Based on experimental findings, overexpression of P‐glycoprotein at the blood–brain barrier has been suggested to be a contributor to pharmacoresistance of the epileptic brain. We test a technique for evaluation of interindividual differences of elevated transporter function, through microPET analysis of the impact of the P‐glycoprotein modulator tariquidar. The preclinical study is intended for eventual translation to clinical research of patients with pharmacoresistant seizure disorders.
Methods: We made a microPET evaluation of the effects of tariquidar on the brain kinetics of the P‐glycoprotein substrate [18F]MPPF in a rat model with spontaneous recurrent seizures, in which it has previously been demonstrated that phenobarbital nonresponders exhibit higher P‐glycoprotein expression than do phenobarbital responders.
Results: Mean baseline parametric maps of the [18F]MPPF unidirectional blood–brain clearance (K1; ml/g per min) and the efflux rate constant (k2; per min) did not differ between the nonresponder and responder group. Tariquidar pretreatment increased the magnitude of [18F]MPPF K1 in hippocampus by a mean of 142% in the nonresponders, which significantly exceeded the 92% increase observed in the responder group. The same treatment decreased the mean magnitude of [18F]MPPF k2 in hippocampus by 27% in nonresponders, without comparable effects in the responder group.
Discussion: These results constitute a proof‐of‐concept for a novel imaging approach to evaluate blood–brain barrier P‐glycoprotein function in animals. By extension, [18F]MPPF positron emission tomography (PET) with tariquidar pretreatment may be amenable for clinical applications exploring further the relevance of P‐glycoprotein overexpression, and for enabling the rational design of pharmacotherapy according to individual differences in P‐glycoprotein expression.</description><identifier>ISSN: 0013-9580</identifier><identifier>EISSN: 1528-1167</identifier><identifier>DOI: 10.1111/j.1528-1167.2010.02671.x</identifier><identifier>PMID: 20633036</identifier><identifier>CODEN: EPILAK</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animal models ; Animals ; Anticonvulsants. Antiepileptics. Antiparkinson agents ; ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism ; ATP-Binding Cassette, Sub-Family B, Member 1 - physiology ; Biological and medical sciences ; Blood-brain barrier ; Blood-Brain Barrier - diagnostic imaging ; Blood-Brain Barrier - metabolism ; Brain ; Brain - diagnostic imaging ; Brain - metabolism ; Brain mapping ; Carbon Radioisotopes ; Disease Models, Animal ; Drug resistance ; Drug Resistance, Multiple - physiology ; Drug‐refractoriness ; Epilepsy ; Epilepsy, Temporal Lobe - diagnostic imaging ; Epilepsy, Temporal Lobe - drug therapy ; Epilepsy, Temporal Lobe - metabolism ; Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy ; Hippocampus ; Hippocampus - diagnostic imaging ; Hippocampus - metabolism ; Humans ; Kinetics ; Medical sciences ; Multidrug transporter ; Nervous system (semeiology, syndromes) ; Neuroimaging ; Neurology ; Neuropharmacology ; P-Glycoprotein ; Pharmacology. Drug treatments ; Pharmacoresistance ; Phenobarbital ; Phenobarbital - metabolism ; Phenobarbital - pharmacology ; Phenobarbital - therapeutic use ; Positron emission tomography ; Quinolines - pharmacology ; Rats ; Rats, Sprague-Dawley ; Seizures ; Seizures - diagnostic imaging ; Seizures - metabolism ; Temporal lobe ; Therapeutic applications ; Translation</subject><ispartof>Epilepsia (Copenhagen), 2010-09, Vol.51 (9), p.1780-1790</ispartof><rights>Wiley Periodicals, Inc. © 2010 International League Against Epilepsy</rights><rights>2015 INIST-CNRS</rights><rights>Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4801-5095effe06a60a7f4304a24eb0c3a5f41c118d25e6119c798992501517d32f623</citedby><cites>FETCH-LOGICAL-c4801-5095effe06a60a7f4304a24eb0c3a5f41c118d25e6119c798992501517d32f623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23249357$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20633036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartmann, Hero</creatorcontrib><creatorcontrib>Fuest, Christina</creatorcontrib><creatorcontrib>La Fougere, Christian</creatorcontrib><creatorcontrib>Xiong, Guoming</creatorcontrib><creatorcontrib>Just, Theresa</creatorcontrib><creatorcontrib>Schlichtiger, Juli</creatorcontrib><creatorcontrib>Winter, Petra</creatorcontrib><creatorcontrib>Böning, Guido</creatorcontrib><creatorcontrib>Wängler, Björn</creatorcontrib><creatorcontrib>Pekcec, Anton</creatorcontrib><creatorcontrib>Soerensen, Jonna</creatorcontrib><creatorcontrib>Bartenstein, Peter</creatorcontrib><creatorcontrib>Cumming, Paul</creatorcontrib><creatorcontrib>Potschka, Heidrun</creatorcontrib><title>Imaging of P‐glycoprotein–mediated pharmacoresistance in the hippocampus: Proof‐of‐concept in a chronic rat model of temporal lobe epilepsy</title><title>Epilepsia (Copenhagen)</title><addtitle>Epilepsia</addtitle><description>Summary
Purpose: Based on experimental findings, overexpression of P‐glycoprotein at the blood–brain barrier has been suggested to be a contributor to pharmacoresistance of the epileptic brain. We test a technique for evaluation of interindividual differences of elevated transporter function, through microPET analysis of the impact of the P‐glycoprotein modulator tariquidar. The preclinical study is intended for eventual translation to clinical research of patients with pharmacoresistant seizure disorders.
Methods: We made a microPET evaluation of the effects of tariquidar on the brain kinetics of the P‐glycoprotein substrate [18F]MPPF in a rat model with spontaneous recurrent seizures, in which it has previously been demonstrated that phenobarbital nonresponders exhibit higher P‐glycoprotein expression than do phenobarbital responders.
Results: Mean baseline parametric maps of the [18F]MPPF unidirectional blood–brain clearance (K1; ml/g per min) and the efflux rate constant (k2; per min) did not differ between the nonresponder and responder group. Tariquidar pretreatment increased the magnitude of [18F]MPPF K1 in hippocampus by a mean of 142% in the nonresponders, which significantly exceeded the 92% increase observed in the responder group. The same treatment decreased the mean magnitude of [18F]MPPF k2 in hippocampus by 27% in nonresponders, without comparable effects in the responder group.
Discussion: These results constitute a proof‐of‐concept for a novel imaging approach to evaluate blood–brain barrier P‐glycoprotein function in animals. By extension, [18F]MPPF positron emission tomography (PET) with tariquidar pretreatment may be amenable for clinical applications exploring further the relevance of P‐glycoprotein overexpression, and for enabling the rational design of pharmacotherapy according to individual differences in P‐glycoprotein expression.</description><subject>Animal models</subject><subject>Animals</subject><subject>Anticonvulsants. Antiepileptics. Antiparkinson agents</subject><subject>ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism</subject><subject>ATP-Binding Cassette, Sub-Family B, Member 1 - physiology</subject><subject>Biological and medical sciences</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - diagnostic imaging</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - metabolism</subject><subject>Brain mapping</subject><subject>Carbon Radioisotopes</subject><subject>Disease Models, Animal</subject><subject>Drug resistance</subject><subject>Drug Resistance, Multiple - physiology</subject><subject>Drug‐refractoriness</subject><subject>Epilepsy</subject><subject>Epilepsy, Temporal Lobe - diagnostic imaging</subject><subject>Epilepsy, Temporal Lobe - drug therapy</subject><subject>Epilepsy, Temporal Lobe - metabolism</subject><subject>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</subject><subject>Hippocampus</subject><subject>Hippocampus - diagnostic imaging</subject><subject>Hippocampus - metabolism</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Medical sciences</subject><subject>Multidrug transporter</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neuropharmacology</subject><subject>P-Glycoprotein</subject><subject>Pharmacology. Drug treatments</subject><subject>Pharmacoresistance</subject><subject>Phenobarbital</subject><subject>Phenobarbital - metabolism</subject><subject>Phenobarbital - pharmacology</subject><subject>Phenobarbital - therapeutic use</subject><subject>Positron emission tomography</subject><subject>Quinolines - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Seizures</subject><subject>Seizures - diagnostic imaging</subject><subject>Seizures - metabolism</subject><subject>Temporal lobe</subject><subject>Therapeutic applications</subject><subject>Translation</subject><issn>0013-9580</issn><issn>1528-1167</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkUGPEyEUgInRuHX1LxguxtN0HzDAjIkHs1ndJpvYg54JpdDSzAwI07i97U8w2X-4v0RmW9ejcgAC33sP3ocQJjAnZVzs5oTTpiJEyDmFcgpUSDK_fYZmTxfP0QyAsKrlDZyhVznvAEAKyV6iMwqCMWBihu4Xvd74YYODw8uHu1-b7mBCTGG0fni4u-_t2uvRrnHc6tRrE5LNPo96MBb7AY9bi7c-xmB0H_f5A16mEFxJ8ziZULA4TqDGZpvC4A1OesR9WNtuqjjaPoakO9yFlcU2-s7GfHiNXjjdZfvmtJ6j75-vvl1eVzdfvywuP91Upm6AVBxabp2zILQALV3NoNa0tiswTHNXE0NIs6bcCkJaI9umbSkHwolcM-oEZefo_TFv-e-Pvc2j6n02tuv0YMM-KykolZQ15N8krwHqGtpCNkfSpJBzsk7F5HudDoqAmtypnZoUqUmRmtypR3fqtoS-PRXZr0rfnwL_yCrAuxOgs9GdS0WDz385RuuWcVm4j0fuZ-nn4b8foK6Wi2nHfgPYqbnH</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Bartmann, Hero</creator><creator>Fuest, Christina</creator><creator>La Fougere, Christian</creator><creator>Xiong, Guoming</creator><creator>Just, Theresa</creator><creator>Schlichtiger, Juli</creator><creator>Winter, Petra</creator><creator>Böning, Guido</creator><creator>Wängler, Björn</creator><creator>Pekcec, Anton</creator><creator>Soerensen, Jonna</creator><creator>Bartenstein, Peter</creator><creator>Cumming, Paul</creator><creator>Potschka, Heidrun</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>201009</creationdate><title>Imaging of P‐glycoprotein–mediated pharmacoresistance in the hippocampus: Proof‐of‐concept in a chronic rat model of temporal lobe epilepsy</title><author>Bartmann, Hero ; Fuest, Christina ; La Fougere, Christian ; Xiong, Guoming ; Just, Theresa ; Schlichtiger, Juli ; Winter, Petra ; Böning, Guido ; Wängler, Björn ; Pekcec, Anton ; Soerensen, Jonna ; Bartenstein, Peter ; Cumming, Paul ; Potschka, Heidrun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4801-5095effe06a60a7f4304a24eb0c3a5f41c118d25e6119c798992501517d32f623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Anticonvulsants. Antiepileptics. Antiparkinson agents</topic><topic>ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism</topic><topic>ATP-Binding Cassette, Sub-Family B, Member 1 - physiology</topic><topic>Biological and medical sciences</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - diagnostic imaging</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - metabolism</topic><topic>Brain mapping</topic><topic>Carbon Radioisotopes</topic><topic>Disease Models, Animal</topic><topic>Drug resistance</topic><topic>Drug Resistance, Multiple - physiology</topic><topic>Drug‐refractoriness</topic><topic>Epilepsy</topic><topic>Epilepsy, Temporal Lobe - diagnostic imaging</topic><topic>Epilepsy, Temporal Lobe - drug therapy</topic><topic>Epilepsy, Temporal Lobe - metabolism</topic><topic>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</topic><topic>Hippocampus</topic><topic>Hippocampus - diagnostic imaging</topic><topic>Hippocampus - metabolism</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Medical sciences</topic><topic>Multidrug transporter</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neuropharmacology</topic><topic>P-Glycoprotein</topic><topic>Pharmacology. Drug treatments</topic><topic>Pharmacoresistance</topic><topic>Phenobarbital</topic><topic>Phenobarbital - metabolism</topic><topic>Phenobarbital - pharmacology</topic><topic>Phenobarbital - therapeutic use</topic><topic>Positron emission tomography</topic><topic>Quinolines - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Seizures</topic><topic>Seizures - diagnostic imaging</topic><topic>Seizures - metabolism</topic><topic>Temporal lobe</topic><topic>Therapeutic applications</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartmann, Hero</creatorcontrib><creatorcontrib>Fuest, Christina</creatorcontrib><creatorcontrib>La Fougere, Christian</creatorcontrib><creatorcontrib>Xiong, Guoming</creatorcontrib><creatorcontrib>Just, Theresa</creatorcontrib><creatorcontrib>Schlichtiger, Juli</creatorcontrib><creatorcontrib>Winter, Petra</creatorcontrib><creatorcontrib>Böning, Guido</creatorcontrib><creatorcontrib>Wängler, Björn</creatorcontrib><creatorcontrib>Pekcec, Anton</creatorcontrib><creatorcontrib>Soerensen, Jonna</creatorcontrib><creatorcontrib>Bartenstein, Peter</creatorcontrib><creatorcontrib>Cumming, Paul</creatorcontrib><creatorcontrib>Potschka, Heidrun</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Epilepsia (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartmann, Hero</au><au>Fuest, Christina</au><au>La Fougere, Christian</au><au>Xiong, Guoming</au><au>Just, Theresa</au><au>Schlichtiger, Juli</au><au>Winter, Petra</au><au>Böning, Guido</au><au>Wängler, Björn</au><au>Pekcec, Anton</au><au>Soerensen, Jonna</au><au>Bartenstein, Peter</au><au>Cumming, Paul</au><au>Potschka, Heidrun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging of P‐glycoprotein–mediated pharmacoresistance in the hippocampus: Proof‐of‐concept in a chronic rat model of temporal lobe epilepsy</atitle><jtitle>Epilepsia (Copenhagen)</jtitle><addtitle>Epilepsia</addtitle><date>2010-09</date><risdate>2010</risdate><volume>51</volume><issue>9</issue><spage>1780</spage><epage>1790</epage><pages>1780-1790</pages><issn>0013-9580</issn><eissn>1528-1167</eissn><coden>EPILAK</coden><abstract>Summary
Purpose: Based on experimental findings, overexpression of P‐glycoprotein at the blood–brain barrier has been suggested to be a contributor to pharmacoresistance of the epileptic brain. We test a technique for evaluation of interindividual differences of elevated transporter function, through microPET analysis of the impact of the P‐glycoprotein modulator tariquidar. The preclinical study is intended for eventual translation to clinical research of patients with pharmacoresistant seizure disorders.
Methods: We made a microPET evaluation of the effects of tariquidar on the brain kinetics of the P‐glycoprotein substrate [18F]MPPF in a rat model with spontaneous recurrent seizures, in which it has previously been demonstrated that phenobarbital nonresponders exhibit higher P‐glycoprotein expression than do phenobarbital responders.
Results: Mean baseline parametric maps of the [18F]MPPF unidirectional blood–brain clearance (K1; ml/g per min) and the efflux rate constant (k2; per min) did not differ between the nonresponder and responder group. Tariquidar pretreatment increased the magnitude of [18F]MPPF K1 in hippocampus by a mean of 142% in the nonresponders, which significantly exceeded the 92% increase observed in the responder group. The same treatment decreased the mean magnitude of [18F]MPPF k2 in hippocampus by 27% in nonresponders, without comparable effects in the responder group.
Discussion: These results constitute a proof‐of‐concept for a novel imaging approach to evaluate blood–brain barrier P‐glycoprotein function in animals. By extension, [18F]MPPF positron emission tomography (PET) with tariquidar pretreatment may be amenable for clinical applications exploring further the relevance of P‐glycoprotein overexpression, and for enabling the rational design of pharmacotherapy according to individual differences in P‐glycoprotein expression.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>20633036</pmid><doi>10.1111/j.1528-1167.2010.02671.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-9580 |
ispartof | Epilepsia (Copenhagen), 2010-09, Vol.51 (9), p.1780-1790 |
issn | 0013-9580 1528-1167 |
language | eng |
recordid | cdi_proquest_miscellaneous_762272381 |
source | Wiley |
subjects | Animal models Animals Anticonvulsants. Antiepileptics. Antiparkinson agents ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism ATP-Binding Cassette, Sub-Family B, Member 1 - physiology Biological and medical sciences Blood-brain barrier Blood-Brain Barrier - diagnostic imaging Blood-Brain Barrier - metabolism Brain Brain - diagnostic imaging Brain - metabolism Brain mapping Carbon Radioisotopes Disease Models, Animal Drug resistance Drug Resistance, Multiple - physiology Drug‐refractoriness Epilepsy Epilepsy, Temporal Lobe - diagnostic imaging Epilepsy, Temporal Lobe - drug therapy Epilepsy, Temporal Lobe - metabolism Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy Hippocampus Hippocampus - diagnostic imaging Hippocampus - metabolism Humans Kinetics Medical sciences Multidrug transporter Nervous system (semeiology, syndromes) Neuroimaging Neurology Neuropharmacology P-Glycoprotein Pharmacology. Drug treatments Pharmacoresistance Phenobarbital Phenobarbital - metabolism Phenobarbital - pharmacology Phenobarbital - therapeutic use Positron emission tomography Quinolines - pharmacology Rats Rats, Sprague-Dawley Seizures Seizures - diagnostic imaging Seizures - metabolism Temporal lobe Therapeutic applications Translation |
title | Imaging of P‐glycoprotein–mediated pharmacoresistance in the hippocampus: Proof‐of‐concept in a chronic rat model of temporal lobe epilepsy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20of%20P%E2%80%90glycoprotein%E2%80%93mediated%20pharmacoresistance%20in%20the%20hippocampus:%20Proof%E2%80%90of%E2%80%90concept%20in%20a%20chronic%20rat%20model%20of%20temporal%20lobe%20epilepsy&rft.jtitle=Epilepsia%20(Copenhagen)&rft.au=Bartmann,%20Hero&rft.date=2010-09&rft.volume=51&rft.issue=9&rft.spage=1780&rft.epage=1790&rft.pages=1780-1790&rft.issn=0013-9580&rft.eissn=1528-1167&rft.coden=EPILAK&rft_id=info:doi/10.1111/j.1528-1167.2010.02671.x&rft_dat=%3Cproquest_cross%3E754004409%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4801-5095effe06a60a7f4304a24eb0c3a5f41c118d25e6119c798992501517d32f623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=754004409&rft_id=info:pmid/20633036&rfr_iscdi=true |