Loading…

Imaging of P‐glycoprotein–mediated pharmacoresistance in the hippocampus: Proof‐of‐concept in a chronic rat model of temporal lobe epilepsy

Summary Purpose:  Based on experimental findings, overexpression of P‐glycoprotein at the blood–brain barrier has been suggested to be a contributor to pharmacoresistance of the epileptic brain. We test a technique for evaluation of interindividual differences of elevated transporter function, throu...

Full description

Saved in:
Bibliographic Details
Published in:Epilepsia (Copenhagen) 2010-09, Vol.51 (9), p.1780-1790
Main Authors: Bartmann, Hero, Fuest, Christina, La Fougere, Christian, Xiong, Guoming, Just, Theresa, Schlichtiger, Juli, Winter, Petra, Böning, Guido, Wängler, Björn, Pekcec, Anton, Soerensen, Jonna, Bartenstein, Peter, Cumming, Paul, Potschka, Heidrun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4801-5095effe06a60a7f4304a24eb0c3a5f41c118d25e6119c798992501517d32f623
cites cdi_FETCH-LOGICAL-c4801-5095effe06a60a7f4304a24eb0c3a5f41c118d25e6119c798992501517d32f623
container_end_page 1790
container_issue 9
container_start_page 1780
container_title Epilepsia (Copenhagen)
container_volume 51
creator Bartmann, Hero
Fuest, Christina
La Fougere, Christian
Xiong, Guoming
Just, Theresa
Schlichtiger, Juli
Winter, Petra
Böning, Guido
Wängler, Björn
Pekcec, Anton
Soerensen, Jonna
Bartenstein, Peter
Cumming, Paul
Potschka, Heidrun
description Summary Purpose:  Based on experimental findings, overexpression of P‐glycoprotein at the blood–brain barrier has been suggested to be a contributor to pharmacoresistance of the epileptic brain. We test a technique for evaluation of interindividual differences of elevated transporter function, through microPET analysis of the impact of the P‐glycoprotein modulator tariquidar. The preclinical study is intended for eventual translation to clinical research of patients with pharmacoresistant seizure disorders. Methods:  We made a microPET evaluation of the effects of tariquidar on the brain kinetics of the P‐glycoprotein substrate [18F]MPPF in a rat model with spontaneous recurrent seizures, in which it has previously been demonstrated that phenobarbital nonresponders exhibit higher P‐glycoprotein expression than do phenobarbital responders. Results:  Mean baseline parametric maps of the [18F]MPPF unidirectional blood–brain clearance (K1; ml/g per min) and the efflux rate constant (k2; per min) did not differ between the nonresponder and responder group. Tariquidar pretreatment increased the magnitude of [18F]MPPF K1 in hippocampus by a mean of 142% in the nonresponders, which significantly exceeded the 92% increase observed in the responder group. The same treatment decreased the mean magnitude of [18F]MPPF k2 in hippocampus by 27% in nonresponders, without comparable effects in the responder group. Discussion:  These results constitute a proof‐of‐concept for a novel imaging approach to evaluate blood–brain barrier P‐glycoprotein function in animals. By extension, [18F]MPPF positron emission tomography (PET) with tariquidar pretreatment may be amenable for clinical applications exploring further the relevance of P‐glycoprotein overexpression, and for enabling the rational design of pharmacotherapy according to individual differences in P‐glycoprotein expression.
doi_str_mv 10.1111/j.1528-1167.2010.02671.x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_762272381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>754004409</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4801-5095effe06a60a7f4304a24eb0c3a5f41c118d25e6119c798992501517d32f623</originalsourceid><addsrcrecordid>eNqNkUGPEyEUgInRuHX1LxguxtN0HzDAjIkHs1ndJpvYg54JpdDSzAwI07i97U8w2X-4v0RmW9ejcgAC33sP3ocQJjAnZVzs5oTTpiJEyDmFcgpUSDK_fYZmTxfP0QyAsKrlDZyhVznvAEAKyV6iMwqCMWBihu4Xvd74YYODw8uHu1-b7mBCTGG0fni4u-_t2uvRrnHc6tRrE5LNPo96MBb7AY9bi7c-xmB0H_f5A16mEFxJ8ziZULA4TqDGZpvC4A1OesR9WNtuqjjaPoakO9yFlcU2-s7GfHiNXjjdZfvmtJ6j75-vvl1eVzdfvywuP91Upm6AVBxabp2zILQALV3NoNa0tiswTHNXE0NIs6bcCkJaI9umbSkHwolcM-oEZefo_TFv-e-Pvc2j6n02tuv0YMM-KykolZQ15N8krwHqGtpCNkfSpJBzsk7F5HudDoqAmtypnZoUqUmRmtypR3fqtoS-PRXZr0rfnwL_yCrAuxOgs9GdS0WDz385RuuWcVm4j0fuZ-nn4b8foK6Wi2nHfgPYqbnH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>754004409</pqid></control><display><type>article</type><title>Imaging of P‐glycoprotein–mediated pharmacoresistance in the hippocampus: Proof‐of‐concept in a chronic rat model of temporal lobe epilepsy</title><source>Wiley</source><creator>Bartmann, Hero ; Fuest, Christina ; La Fougere, Christian ; Xiong, Guoming ; Just, Theresa ; Schlichtiger, Juli ; Winter, Petra ; Böning, Guido ; Wängler, Björn ; Pekcec, Anton ; Soerensen, Jonna ; Bartenstein, Peter ; Cumming, Paul ; Potschka, Heidrun</creator><creatorcontrib>Bartmann, Hero ; Fuest, Christina ; La Fougere, Christian ; Xiong, Guoming ; Just, Theresa ; Schlichtiger, Juli ; Winter, Petra ; Böning, Guido ; Wängler, Björn ; Pekcec, Anton ; Soerensen, Jonna ; Bartenstein, Peter ; Cumming, Paul ; Potschka, Heidrun</creatorcontrib><description>Summary Purpose:  Based on experimental findings, overexpression of P‐glycoprotein at the blood–brain barrier has been suggested to be a contributor to pharmacoresistance of the epileptic brain. We test a technique for evaluation of interindividual differences of elevated transporter function, through microPET analysis of the impact of the P‐glycoprotein modulator tariquidar. The preclinical study is intended for eventual translation to clinical research of patients with pharmacoresistant seizure disorders. Methods:  We made a microPET evaluation of the effects of tariquidar on the brain kinetics of the P‐glycoprotein substrate [18F]MPPF in a rat model with spontaneous recurrent seizures, in which it has previously been demonstrated that phenobarbital nonresponders exhibit higher P‐glycoprotein expression than do phenobarbital responders. Results:  Mean baseline parametric maps of the [18F]MPPF unidirectional blood–brain clearance (K1; ml/g per min) and the efflux rate constant (k2; per min) did not differ between the nonresponder and responder group. Tariquidar pretreatment increased the magnitude of [18F]MPPF K1 in hippocampus by a mean of 142% in the nonresponders, which significantly exceeded the 92% increase observed in the responder group. The same treatment decreased the mean magnitude of [18F]MPPF k2 in hippocampus by 27% in nonresponders, without comparable effects in the responder group. Discussion:  These results constitute a proof‐of‐concept for a novel imaging approach to evaluate blood–brain barrier P‐glycoprotein function in animals. By extension, [18F]MPPF positron emission tomography (PET) with tariquidar pretreatment may be amenable for clinical applications exploring further the relevance of P‐glycoprotein overexpression, and for enabling the rational design of pharmacotherapy according to individual differences in P‐glycoprotein expression.</description><identifier>ISSN: 0013-9580</identifier><identifier>EISSN: 1528-1167</identifier><identifier>DOI: 10.1111/j.1528-1167.2010.02671.x</identifier><identifier>PMID: 20633036</identifier><identifier>CODEN: EPILAK</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animal models ; Animals ; Anticonvulsants. Antiepileptics. Antiparkinson agents ; ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism ; ATP-Binding Cassette, Sub-Family B, Member 1 - physiology ; Biological and medical sciences ; Blood-brain barrier ; Blood-Brain Barrier - diagnostic imaging ; Blood-Brain Barrier - metabolism ; Brain ; Brain - diagnostic imaging ; Brain - metabolism ; Brain mapping ; Carbon Radioisotopes ; Disease Models, Animal ; Drug resistance ; Drug Resistance, Multiple - physiology ; Drug‐refractoriness ; Epilepsy ; Epilepsy, Temporal Lobe - diagnostic imaging ; Epilepsy, Temporal Lobe - drug therapy ; Epilepsy, Temporal Lobe - metabolism ; Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy ; Hippocampus ; Hippocampus - diagnostic imaging ; Hippocampus - metabolism ; Humans ; Kinetics ; Medical sciences ; Multidrug transporter ; Nervous system (semeiology, syndromes) ; Neuroimaging ; Neurology ; Neuropharmacology ; P-Glycoprotein ; Pharmacology. Drug treatments ; Pharmacoresistance ; Phenobarbital ; Phenobarbital - metabolism ; Phenobarbital - pharmacology ; Phenobarbital - therapeutic use ; Positron emission tomography ; Quinolines - pharmacology ; Rats ; Rats, Sprague-Dawley ; Seizures ; Seizures - diagnostic imaging ; Seizures - metabolism ; Temporal lobe ; Therapeutic applications ; Translation</subject><ispartof>Epilepsia (Copenhagen), 2010-09, Vol.51 (9), p.1780-1790</ispartof><rights>Wiley Periodicals, Inc. © 2010 International League Against Epilepsy</rights><rights>2015 INIST-CNRS</rights><rights>Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4801-5095effe06a60a7f4304a24eb0c3a5f41c118d25e6119c798992501517d32f623</citedby><cites>FETCH-LOGICAL-c4801-5095effe06a60a7f4304a24eb0c3a5f41c118d25e6119c798992501517d32f623</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23249357$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20633036$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bartmann, Hero</creatorcontrib><creatorcontrib>Fuest, Christina</creatorcontrib><creatorcontrib>La Fougere, Christian</creatorcontrib><creatorcontrib>Xiong, Guoming</creatorcontrib><creatorcontrib>Just, Theresa</creatorcontrib><creatorcontrib>Schlichtiger, Juli</creatorcontrib><creatorcontrib>Winter, Petra</creatorcontrib><creatorcontrib>Böning, Guido</creatorcontrib><creatorcontrib>Wängler, Björn</creatorcontrib><creatorcontrib>Pekcec, Anton</creatorcontrib><creatorcontrib>Soerensen, Jonna</creatorcontrib><creatorcontrib>Bartenstein, Peter</creatorcontrib><creatorcontrib>Cumming, Paul</creatorcontrib><creatorcontrib>Potschka, Heidrun</creatorcontrib><title>Imaging of P‐glycoprotein–mediated pharmacoresistance in the hippocampus: Proof‐of‐concept in a chronic rat model of temporal lobe epilepsy</title><title>Epilepsia (Copenhagen)</title><addtitle>Epilepsia</addtitle><description>Summary Purpose:  Based on experimental findings, overexpression of P‐glycoprotein at the blood–brain barrier has been suggested to be a contributor to pharmacoresistance of the epileptic brain. We test a technique for evaluation of interindividual differences of elevated transporter function, through microPET analysis of the impact of the P‐glycoprotein modulator tariquidar. The preclinical study is intended for eventual translation to clinical research of patients with pharmacoresistant seizure disorders. Methods:  We made a microPET evaluation of the effects of tariquidar on the brain kinetics of the P‐glycoprotein substrate [18F]MPPF in a rat model with spontaneous recurrent seizures, in which it has previously been demonstrated that phenobarbital nonresponders exhibit higher P‐glycoprotein expression than do phenobarbital responders. Results:  Mean baseline parametric maps of the [18F]MPPF unidirectional blood–brain clearance (K1; ml/g per min) and the efflux rate constant (k2; per min) did not differ between the nonresponder and responder group. Tariquidar pretreatment increased the magnitude of [18F]MPPF K1 in hippocampus by a mean of 142% in the nonresponders, which significantly exceeded the 92% increase observed in the responder group. The same treatment decreased the mean magnitude of [18F]MPPF k2 in hippocampus by 27% in nonresponders, without comparable effects in the responder group. Discussion:  These results constitute a proof‐of‐concept for a novel imaging approach to evaluate blood–brain barrier P‐glycoprotein function in animals. By extension, [18F]MPPF positron emission tomography (PET) with tariquidar pretreatment may be amenable for clinical applications exploring further the relevance of P‐glycoprotein overexpression, and for enabling the rational design of pharmacotherapy according to individual differences in P‐glycoprotein expression.</description><subject>Animal models</subject><subject>Animals</subject><subject>Anticonvulsants. Antiepileptics. Antiparkinson agents</subject><subject>ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism</subject><subject>ATP-Binding Cassette, Sub-Family B, Member 1 - physiology</subject><subject>Biological and medical sciences</subject><subject>Blood-brain barrier</subject><subject>Blood-Brain Barrier - diagnostic imaging</subject><subject>Blood-Brain Barrier - metabolism</subject><subject>Brain</subject><subject>Brain - diagnostic imaging</subject><subject>Brain - metabolism</subject><subject>Brain mapping</subject><subject>Carbon Radioisotopes</subject><subject>Disease Models, Animal</subject><subject>Drug resistance</subject><subject>Drug Resistance, Multiple - physiology</subject><subject>Drug‐refractoriness</subject><subject>Epilepsy</subject><subject>Epilepsy, Temporal Lobe - diagnostic imaging</subject><subject>Epilepsy, Temporal Lobe - drug therapy</subject><subject>Epilepsy, Temporal Lobe - metabolism</subject><subject>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</subject><subject>Hippocampus</subject><subject>Hippocampus - diagnostic imaging</subject><subject>Hippocampus - metabolism</subject><subject>Humans</subject><subject>Kinetics</subject><subject>Medical sciences</subject><subject>Multidrug transporter</subject><subject>Nervous system (semeiology, syndromes)</subject><subject>Neuroimaging</subject><subject>Neurology</subject><subject>Neuropharmacology</subject><subject>P-Glycoprotein</subject><subject>Pharmacology. Drug treatments</subject><subject>Pharmacoresistance</subject><subject>Phenobarbital</subject><subject>Phenobarbital - metabolism</subject><subject>Phenobarbital - pharmacology</subject><subject>Phenobarbital - therapeutic use</subject><subject>Positron emission tomography</subject><subject>Quinolines - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Seizures</subject><subject>Seizures - diagnostic imaging</subject><subject>Seizures - metabolism</subject><subject>Temporal lobe</subject><subject>Therapeutic applications</subject><subject>Translation</subject><issn>0013-9580</issn><issn>1528-1167</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkUGPEyEUgInRuHX1LxguxtN0HzDAjIkHs1ndJpvYg54JpdDSzAwI07i97U8w2X-4v0RmW9ejcgAC33sP3ocQJjAnZVzs5oTTpiJEyDmFcgpUSDK_fYZmTxfP0QyAsKrlDZyhVznvAEAKyV6iMwqCMWBihu4Xvd74YYODw8uHu1-b7mBCTGG0fni4u-_t2uvRrnHc6tRrE5LNPo96MBb7AY9bi7c-xmB0H_f5A16mEFxJ8ziZULA4TqDGZpvC4A1OesR9WNtuqjjaPoakO9yFlcU2-s7GfHiNXjjdZfvmtJ6j75-vvl1eVzdfvywuP91Upm6AVBxabp2zILQALV3NoNa0tiswTHNXE0NIs6bcCkJaI9umbSkHwolcM-oEZefo_TFv-e-Pvc2j6n02tuv0YMM-KykolZQ15N8krwHqGtpCNkfSpJBzsk7F5HudDoqAmtypnZoUqUmRmtypR3fqtoS-PRXZr0rfnwL_yCrAuxOgs9GdS0WDz385RuuWcVm4j0fuZ-nn4b8foK6Wi2nHfgPYqbnH</recordid><startdate>201009</startdate><enddate>201009</enddate><creator>Bartmann, Hero</creator><creator>Fuest, Christina</creator><creator>La Fougere, Christian</creator><creator>Xiong, Guoming</creator><creator>Just, Theresa</creator><creator>Schlichtiger, Juli</creator><creator>Winter, Petra</creator><creator>Böning, Guido</creator><creator>Wängler, Björn</creator><creator>Pekcec, Anton</creator><creator>Soerensen, Jonna</creator><creator>Bartenstein, Peter</creator><creator>Cumming, Paul</creator><creator>Potschka, Heidrun</creator><general>Blackwell Publishing Ltd</general><general>Wiley-Blackwell</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7TK</scope><scope>7U7</scope><scope>C1K</scope></search><sort><creationdate>201009</creationdate><title>Imaging of P‐glycoprotein–mediated pharmacoresistance in the hippocampus: Proof‐of‐concept in a chronic rat model of temporal lobe epilepsy</title><author>Bartmann, Hero ; Fuest, Christina ; La Fougere, Christian ; Xiong, Guoming ; Just, Theresa ; Schlichtiger, Juli ; Winter, Petra ; Böning, Guido ; Wängler, Björn ; Pekcec, Anton ; Soerensen, Jonna ; Bartenstein, Peter ; Cumming, Paul ; Potschka, Heidrun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4801-5095effe06a60a7f4304a24eb0c3a5f41c118d25e6119c798992501517d32f623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Animal models</topic><topic>Animals</topic><topic>Anticonvulsants. Antiepileptics. Antiparkinson agents</topic><topic>ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism</topic><topic>ATP-Binding Cassette, Sub-Family B, Member 1 - physiology</topic><topic>Biological and medical sciences</topic><topic>Blood-brain barrier</topic><topic>Blood-Brain Barrier - diagnostic imaging</topic><topic>Blood-Brain Barrier - metabolism</topic><topic>Brain</topic><topic>Brain - diagnostic imaging</topic><topic>Brain - metabolism</topic><topic>Brain mapping</topic><topic>Carbon Radioisotopes</topic><topic>Disease Models, Animal</topic><topic>Drug resistance</topic><topic>Drug Resistance, Multiple - physiology</topic><topic>Drug‐refractoriness</topic><topic>Epilepsy</topic><topic>Epilepsy, Temporal Lobe - diagnostic imaging</topic><topic>Epilepsy, Temporal Lobe - drug therapy</topic><topic>Epilepsy, Temporal Lobe - metabolism</topic><topic>Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy</topic><topic>Hippocampus</topic><topic>Hippocampus - diagnostic imaging</topic><topic>Hippocampus - metabolism</topic><topic>Humans</topic><topic>Kinetics</topic><topic>Medical sciences</topic><topic>Multidrug transporter</topic><topic>Nervous system (semeiology, syndromes)</topic><topic>Neuroimaging</topic><topic>Neurology</topic><topic>Neuropharmacology</topic><topic>P-Glycoprotein</topic><topic>Pharmacology. Drug treatments</topic><topic>Pharmacoresistance</topic><topic>Phenobarbital</topic><topic>Phenobarbital - metabolism</topic><topic>Phenobarbital - pharmacology</topic><topic>Phenobarbital - therapeutic use</topic><topic>Positron emission tomography</topic><topic>Quinolines - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Seizures</topic><topic>Seizures - diagnostic imaging</topic><topic>Seizures - metabolism</topic><topic>Temporal lobe</topic><topic>Therapeutic applications</topic><topic>Translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bartmann, Hero</creatorcontrib><creatorcontrib>Fuest, Christina</creatorcontrib><creatorcontrib>La Fougere, Christian</creatorcontrib><creatorcontrib>Xiong, Guoming</creatorcontrib><creatorcontrib>Just, Theresa</creatorcontrib><creatorcontrib>Schlichtiger, Juli</creatorcontrib><creatorcontrib>Winter, Petra</creatorcontrib><creatorcontrib>Böning, Guido</creatorcontrib><creatorcontrib>Wängler, Björn</creatorcontrib><creatorcontrib>Pekcec, Anton</creatorcontrib><creatorcontrib>Soerensen, Jonna</creatorcontrib><creatorcontrib>Bartenstein, Peter</creatorcontrib><creatorcontrib>Cumming, Paul</creatorcontrib><creatorcontrib>Potschka, Heidrun</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Epilepsia (Copenhagen)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bartmann, Hero</au><au>Fuest, Christina</au><au>La Fougere, Christian</au><au>Xiong, Guoming</au><au>Just, Theresa</au><au>Schlichtiger, Juli</au><au>Winter, Petra</au><au>Böning, Guido</au><au>Wängler, Björn</au><au>Pekcec, Anton</au><au>Soerensen, Jonna</au><au>Bartenstein, Peter</au><au>Cumming, Paul</au><au>Potschka, Heidrun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging of P‐glycoprotein–mediated pharmacoresistance in the hippocampus: Proof‐of‐concept in a chronic rat model of temporal lobe epilepsy</atitle><jtitle>Epilepsia (Copenhagen)</jtitle><addtitle>Epilepsia</addtitle><date>2010-09</date><risdate>2010</risdate><volume>51</volume><issue>9</issue><spage>1780</spage><epage>1790</epage><pages>1780-1790</pages><issn>0013-9580</issn><eissn>1528-1167</eissn><coden>EPILAK</coden><abstract>Summary Purpose:  Based on experimental findings, overexpression of P‐glycoprotein at the blood–brain barrier has been suggested to be a contributor to pharmacoresistance of the epileptic brain. We test a technique for evaluation of interindividual differences of elevated transporter function, through microPET analysis of the impact of the P‐glycoprotein modulator tariquidar. The preclinical study is intended for eventual translation to clinical research of patients with pharmacoresistant seizure disorders. Methods:  We made a microPET evaluation of the effects of tariquidar on the brain kinetics of the P‐glycoprotein substrate [18F]MPPF in a rat model with spontaneous recurrent seizures, in which it has previously been demonstrated that phenobarbital nonresponders exhibit higher P‐glycoprotein expression than do phenobarbital responders. Results:  Mean baseline parametric maps of the [18F]MPPF unidirectional blood–brain clearance (K1; ml/g per min) and the efflux rate constant (k2; per min) did not differ between the nonresponder and responder group. Tariquidar pretreatment increased the magnitude of [18F]MPPF K1 in hippocampus by a mean of 142% in the nonresponders, which significantly exceeded the 92% increase observed in the responder group. The same treatment decreased the mean magnitude of [18F]MPPF k2 in hippocampus by 27% in nonresponders, without comparable effects in the responder group. Discussion:  These results constitute a proof‐of‐concept for a novel imaging approach to evaluate blood–brain barrier P‐glycoprotein function in animals. By extension, [18F]MPPF positron emission tomography (PET) with tariquidar pretreatment may be amenable for clinical applications exploring further the relevance of P‐glycoprotein overexpression, and for enabling the rational design of pharmacotherapy according to individual differences in P‐glycoprotein expression.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>20633036</pmid><doi>10.1111/j.1528-1167.2010.02671.x</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-9580
ispartof Epilepsia (Copenhagen), 2010-09, Vol.51 (9), p.1780-1790
issn 0013-9580
1528-1167
language eng
recordid cdi_proquest_miscellaneous_762272381
source Wiley
subjects Animal models
Animals
Anticonvulsants. Antiepileptics. Antiparkinson agents
ATP-Binding Cassette, Sub-Family B, Member 1 - metabolism
ATP-Binding Cassette, Sub-Family B, Member 1 - physiology
Biological and medical sciences
Blood-brain barrier
Blood-Brain Barrier - diagnostic imaging
Blood-Brain Barrier - metabolism
Brain
Brain - diagnostic imaging
Brain - metabolism
Brain mapping
Carbon Radioisotopes
Disease Models, Animal
Drug resistance
Drug Resistance, Multiple - physiology
Drug‐refractoriness
Epilepsy
Epilepsy, Temporal Lobe - diagnostic imaging
Epilepsy, Temporal Lobe - drug therapy
Epilepsy, Temporal Lobe - metabolism
Headache. Facial pains. Syncopes. Epilepsia. Intracranial hypertension. Brain oedema. Cerebral palsy
Hippocampus
Hippocampus - diagnostic imaging
Hippocampus - metabolism
Humans
Kinetics
Medical sciences
Multidrug transporter
Nervous system (semeiology, syndromes)
Neuroimaging
Neurology
Neuropharmacology
P-Glycoprotein
Pharmacology. Drug treatments
Pharmacoresistance
Phenobarbital
Phenobarbital - metabolism
Phenobarbital - pharmacology
Phenobarbital - therapeutic use
Positron emission tomography
Quinolines - pharmacology
Rats
Rats, Sprague-Dawley
Seizures
Seizures - diagnostic imaging
Seizures - metabolism
Temporal lobe
Therapeutic applications
Translation
title Imaging of P‐glycoprotein–mediated pharmacoresistance in the hippocampus: Proof‐of‐concept in a chronic rat model of temporal lobe epilepsy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A48%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20of%20P%E2%80%90glycoprotein%E2%80%93mediated%20pharmacoresistance%20in%20the%20hippocampus:%20Proof%E2%80%90of%E2%80%90concept%20in%20a%20chronic%20rat%20model%20of%20temporal%20lobe%20epilepsy&rft.jtitle=Epilepsia%20(Copenhagen)&rft.au=Bartmann,%20Hero&rft.date=2010-09&rft.volume=51&rft.issue=9&rft.spage=1780&rft.epage=1790&rft.pages=1780-1790&rft.issn=0013-9580&rft.eissn=1528-1167&rft.coden=EPILAK&rft_id=info:doi/10.1111/j.1528-1167.2010.02671.x&rft_dat=%3Cproquest_cross%3E754004409%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4801-5095effe06a60a7f4304a24eb0c3a5f41c118d25e6119c798992501517d32f623%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=754004409&rft_id=info:pmid/20633036&rfr_iscdi=true