Loading…

Effect of anoxic decay process on simultaneous nitrification denitrification in a membrane bioreactor operated without an anoxic tank

This study was focused on evaluating the role and the effect of anoxic decay on the extent of simultaneous nitrification-denitrification (SNdN) process sustained in a single membrane bioreactor. The membrane bioreactor was fed with relatively strong domestic sewage and operated at steady state at a...

Full description

Saved in:
Bibliographic Details
Published in:Water science and technology 2010-01, Vol.61 (3), p.771-780
Main Authors: Sarioglu, M, Insel, G, Artan, N, Orhon, D
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c420t-bb5f3e3fb845f31b7158058afbc4386c7139a23198b06667e9ee25377539199f3
cites
container_end_page 780
container_issue 3
container_start_page 771
container_title Water science and technology
container_volume 61
creator Sarioglu, M
Insel, G
Artan, N
Orhon, D
description This study was focused on evaluating the role and the effect of anoxic decay on the extent of simultaneous nitrification-denitrification (SNdN) process sustained in a single membrane bioreactor. The membrane bioreactor was fed with relatively strong domestic sewage and operated at steady state at a sludge age of 36 days at a corresponding suspended solids level maintained in the range of 17,500-21,000 mg/L. The SNdN could be sustained due to diffusion limitation of oxygen into the flocs. The evaluation identified an MLSS threshold level of around 17,000-18,000 mg/L below which nitrogen removal was essentially controlled by denitrification and above, the rate limiting mechanism shifted to nitrification maintaining total nitrogen removal efficiency of 85-95% for a typical domestic sewage. The contribution of anoxic decay process to the overall denitrification potential was evaluated as 60%, substantially higher than the remaining 40% associated with the anoxic growth during the SNdN process.
doi_str_mv 10.2166/wst.2010.853
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_762279911</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>762279911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c420t-bb5f3e3fb845f31b7158058afbc4386c7139a23198b06667e9ee25377539199f3</originalsourceid><addsrcrecordid>eNqFkTtvFTEQhS1ERC6BjhpZoqBhgx-7fpQoCg8pUppQW7bvWDjcXV9sr5L8AP43E90ECZpUMyN_OjPHh5A3nJ0KrtTHm9ZPBcPJTPIZ2XBr1WC1FM_JhgktBy6EPCYvW7tmjGk5shfkGPmJaT5uyO_zlCB2WhL1S7nNkW4h-ju6ryVCa7QstOV53XW_QFkbXXKvOeXoe8anLfw754V6OsMcKuI05FLBx14qLXuovsOW3uT-o6wdlz3uQ-Wfr8hR8rsGrx_qCfn--fzq7Otwcfnl29mniyGOgvUhhClJkCmYERseNJ8Mm4xPIY7SqKi5tF5Ibk1gSikNFkBMUutJWvyXJE_I-4Mu2vu1Qutuzi3Cbndw57QSQlvL-dOklAYxZpB89x95Xda6oA3HLZ6l2WgUUh8OVKyltQrJ7Wuefb1znLn7HB3m6O5zdJgj4m8fRNcww_Yv_Bic_APEeZnz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1943870486</pqid></control><display><type>article</type><title>Effect of anoxic decay process on simultaneous nitrification denitrification in a membrane bioreactor operated without an anoxic tank</title><source>Alma/SFX Local Collection</source><creator>Sarioglu, M ; Insel, G ; Artan, N ; Orhon, D</creator><creatorcontrib>Sarioglu, M ; Insel, G ; Artan, N ; Orhon, D</creatorcontrib><description>This study was focused on evaluating the role and the effect of anoxic decay on the extent of simultaneous nitrification-denitrification (SNdN) process sustained in a single membrane bioreactor. The membrane bioreactor was fed with relatively strong domestic sewage and operated at steady state at a sludge age of 36 days at a corresponding suspended solids level maintained in the range of 17,500-21,000 mg/L. The SNdN could be sustained due to diffusion limitation of oxygen into the flocs. The evaluation identified an MLSS threshold level of around 17,000-18,000 mg/L below which nitrogen removal was essentially controlled by denitrification and above, the rate limiting mechanism shifted to nitrification maintaining total nitrogen removal efficiency of 85-95% for a typical domestic sewage. The contribution of anoxic decay process to the overall denitrification potential was evaluated as 60%, substantially higher than the remaining 40% associated with the anoxic growth during the SNdN process.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2010.853</identifier><identifier>PMID: 20150714</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Anoxia ; Biodegradation, Environmental ; Biomass ; Bioreactors ; Decay ; Denitrification ; Diffusion ; Dye dispersion ; Equipment Design ; Evaluation ; Household wastes ; Hypoxia ; Kinetics ; Membrane reactors ; Nitrification ; Nitrites - chemistry ; Nitrogen - isolation &amp; purification ; Nitrogen removal ; Oxygen - analysis ; Refuse Disposal - methods ; Removal ; Sewage ; Sludge ; Suspended particulate matter ; Suspended solids ; Waste Disposal, Fluid - methods ; Water Purification</subject><ispartof>Water science and technology, 2010-01, Vol.61 (3), p.771-780</ispartof><rights>Copyright IWA Publishing Feb 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c420t-bb5f3e3fb845f31b7158058afbc4386c7139a23198b06667e9ee25377539199f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/20150714$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sarioglu, M</creatorcontrib><creatorcontrib>Insel, G</creatorcontrib><creatorcontrib>Artan, N</creatorcontrib><creatorcontrib>Orhon, D</creatorcontrib><title>Effect of anoxic decay process on simultaneous nitrification denitrification in a membrane bioreactor operated without an anoxic tank</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>This study was focused on evaluating the role and the effect of anoxic decay on the extent of simultaneous nitrification-denitrification (SNdN) process sustained in a single membrane bioreactor. The membrane bioreactor was fed with relatively strong domestic sewage and operated at steady state at a sludge age of 36 days at a corresponding suspended solids level maintained in the range of 17,500-21,000 mg/L. The SNdN could be sustained due to diffusion limitation of oxygen into the flocs. The evaluation identified an MLSS threshold level of around 17,000-18,000 mg/L below which nitrogen removal was essentially controlled by denitrification and above, the rate limiting mechanism shifted to nitrification maintaining total nitrogen removal efficiency of 85-95% for a typical domestic sewage. The contribution of anoxic decay process to the overall denitrification potential was evaluated as 60%, substantially higher than the remaining 40% associated with the anoxic growth during the SNdN process.</description><subject>Anoxia</subject><subject>Biodegradation, Environmental</subject><subject>Biomass</subject><subject>Bioreactors</subject><subject>Decay</subject><subject>Denitrification</subject><subject>Diffusion</subject><subject>Dye dispersion</subject><subject>Equipment Design</subject><subject>Evaluation</subject><subject>Household wastes</subject><subject>Hypoxia</subject><subject>Kinetics</subject><subject>Membrane reactors</subject><subject>Nitrification</subject><subject>Nitrites - chemistry</subject><subject>Nitrogen - isolation &amp; purification</subject><subject>Nitrogen removal</subject><subject>Oxygen - analysis</subject><subject>Refuse Disposal - methods</subject><subject>Removal</subject><subject>Sewage</subject><subject>Sludge</subject><subject>Suspended particulate matter</subject><subject>Suspended solids</subject><subject>Waste Disposal, Fluid - methods</subject><subject>Water Purification</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkTtvFTEQhS1ERC6BjhpZoqBhgx-7fpQoCg8pUppQW7bvWDjcXV9sr5L8AP43E90ECZpUMyN_OjPHh5A3nJ0KrtTHm9ZPBcPJTPIZ2XBr1WC1FM_JhgktBy6EPCYvW7tmjGk5shfkGPmJaT5uyO_zlCB2WhL1S7nNkW4h-ju6ryVCa7QstOV53XW_QFkbXXKvOeXoe8anLfw754V6OsMcKuI05FLBx14qLXuovsOW3uT-o6wdlz3uQ-Wfr8hR8rsGrx_qCfn--fzq7Otwcfnl29mniyGOgvUhhClJkCmYERseNJ8Mm4xPIY7SqKi5tF5Ibk1gSikNFkBMUutJWvyXJE_I-4Mu2vu1Qutuzi3Cbndw57QSQlvL-dOklAYxZpB89x95Xda6oA3HLZ6l2WgUUh8OVKyltQrJ7Wuefb1znLn7HB3m6O5zdJgj4m8fRNcww_Yv_Bic_APEeZnz</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Sarioglu, M</creator><creator>Insel, G</creator><creator>Artan, N</creator><creator>Orhon, D</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>7QO</scope><scope>7ST</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20100101</creationdate><title>Effect of anoxic decay process on simultaneous nitrification denitrification in a membrane bioreactor operated without an anoxic tank</title><author>Sarioglu, M ; Insel, G ; Artan, N ; Orhon, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c420t-bb5f3e3fb845f31b7158058afbc4386c7139a23198b06667e9ee25377539199f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Anoxia</topic><topic>Biodegradation, Environmental</topic><topic>Biomass</topic><topic>Bioreactors</topic><topic>Decay</topic><topic>Denitrification</topic><topic>Diffusion</topic><topic>Dye dispersion</topic><topic>Equipment Design</topic><topic>Evaluation</topic><topic>Household wastes</topic><topic>Hypoxia</topic><topic>Kinetics</topic><topic>Membrane reactors</topic><topic>Nitrification</topic><topic>Nitrites - chemistry</topic><topic>Nitrogen - isolation &amp; purification</topic><topic>Nitrogen removal</topic><topic>Oxygen - analysis</topic><topic>Refuse Disposal - methods</topic><topic>Removal</topic><topic>Sewage</topic><topic>Sludge</topic><topic>Suspended particulate matter</topic><topic>Suspended solids</topic><topic>Waste Disposal, Fluid - methods</topic><topic>Water Purification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sarioglu, M</creatorcontrib><creatorcontrib>Insel, G</creatorcontrib><creatorcontrib>Artan, N</creatorcontrib><creatorcontrib>Orhon, D</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sarioglu, M</au><au>Insel, G</au><au>Artan, N</au><au>Orhon, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of anoxic decay process on simultaneous nitrification denitrification in a membrane bioreactor operated without an anoxic tank</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>61</volume><issue>3</issue><spage>771</spage><epage>780</epage><pages>771-780</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>This study was focused on evaluating the role and the effect of anoxic decay on the extent of simultaneous nitrification-denitrification (SNdN) process sustained in a single membrane bioreactor. The membrane bioreactor was fed with relatively strong domestic sewage and operated at steady state at a sludge age of 36 days at a corresponding suspended solids level maintained in the range of 17,500-21,000 mg/L. The SNdN could be sustained due to diffusion limitation of oxygen into the flocs. The evaluation identified an MLSS threshold level of around 17,000-18,000 mg/L below which nitrogen removal was essentially controlled by denitrification and above, the rate limiting mechanism shifted to nitrification maintaining total nitrogen removal efficiency of 85-95% for a typical domestic sewage. The contribution of anoxic decay process to the overall denitrification potential was evaluated as 60%, substantially higher than the remaining 40% associated with the anoxic growth during the SNdN process.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>20150714</pmid><doi>10.2166/wst.2010.853</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2010-01, Vol.61 (3), p.771-780
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_miscellaneous_762279911
source Alma/SFX Local Collection
subjects Anoxia
Biodegradation, Environmental
Biomass
Bioreactors
Decay
Denitrification
Diffusion
Dye dispersion
Equipment Design
Evaluation
Household wastes
Hypoxia
Kinetics
Membrane reactors
Nitrification
Nitrites - chemistry
Nitrogen - isolation & purification
Nitrogen removal
Oxygen - analysis
Refuse Disposal - methods
Removal
Sewage
Sludge
Suspended particulate matter
Suspended solids
Waste Disposal, Fluid - methods
Water Purification
title Effect of anoxic decay process on simultaneous nitrification denitrification in a membrane bioreactor operated without an anoxic tank
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A48%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20anoxic%20decay%20process%20on%20simultaneous%20nitrification%20denitrification%20in%20a%20membrane%20bioreactor%20operated%20without%20an%20anoxic%20tank&rft.jtitle=Water%20science%20and%20technology&rft.au=Sarioglu,%20M&rft.date=2010-01-01&rft.volume=61&rft.issue=3&rft.spage=771&rft.epage=780&rft.pages=771-780&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2010.853&rft_dat=%3Cproquest_cross%3E762279911%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c420t-bb5f3e3fb845f31b7158058afbc4386c7139a23198b06667e9ee25377539199f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1943870486&rft_id=info:pmid/20150714&rfr_iscdi=true