Loading…
Fast algorithm for calculation of inhomogeneity gradient in magnetic resonance imaging data
Purpose To develop and implement a new approach for correcting the intensity inhomogeneity in magnetic resonance imaging (MRI) data. Materials and Methods The algorithm is based on the assumption that intensity inhomogeneity in MR data is multiplicative and smoothly varying. Using a statistically st...
Saved in:
Published in: | Journal of magnetic resonance imaging 2010-11, Vol.32 (5), p.1197-1208 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4684-8168f72a0b7baa5c2649ed5dfbc75396a085aa68a2b27fb8b7a0fa51f4dc7f4f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4684-8168f72a0b7baa5c2649ed5dfbc75396a085aa68a2b27fb8b7a0fa51f4dc7f4f3 |
container_end_page | 1208 |
container_issue | 5 |
container_start_page | 1197 |
container_title | Journal of magnetic resonance imaging |
container_volume | 32 |
creator | Hui, Cheukkai Zhou, Yu Xiang Narayana, Ponnada |
description | Purpose
To develop and implement a new approach for correcting the intensity inhomogeneity in magnetic resonance imaging (MRI) data.
Materials and Methods
The algorithm is based on the assumption that intensity inhomogeneity in MR data is multiplicative and smoothly varying. Using a statistically stable method, the algorithm first calculates the partial derivative of the inhomogeneity gradient across the data. The algorithm then solves for the gradient field and fits it to a parametric surface. It was tested on both simulated and real human and animal MRI data.
Results
The algorithm is shown to restore the homogeneity in all images that were tested. On real human brain images the algorithm demonstrated superior or comparable performance relative to some of the commonly used intensity inhomogeneity correction methods such as SPM, BrainSuite, and N3.
Conclusion
The proposed algorithm provides an alternative method for correcting the intensity inhomogeneity in MR images. It is shown to be fast and its performance is superior or comparable to algorithms described in the published literature. Due to its generality, this algorithm is applicable to MR images of both humans and animals. J. Magn. Reson. Imaging 2010;32:1197–1208. © 2010 Wiley‐Liss, Inc. |
doi_str_mv | 10.1002/jmri.22344 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_762480798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>762480798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4684-8168f72a0b7baa5c2649ed5dfbc75396a085aa68a2b27fb8b7a0fa51f4dc7f4f3</originalsourceid><addsrcrecordid>eNp9kE1PFTEUhhujEUQ3_gDTnYnJQNuZfszSgFwxCGg0JLpoznTaoTjTYtsbvf_ewgWWrs7JyfO-OXkQek3JPiWEHVwvye8z1nbdE7RLOWMN40o8rTvhbUMVkTvoRc7XhJC-7_hztMMoaSsodtHPY8gFwzzF5MvVgl1M2MBs1jMUHwOODvtwFZc42WB92eApwehtKPWMF5iCLd7gZHMMEIzFvt58mPAIBV6iZw7mbF_dzz30_fjDt8OPzen56uTw_WljOqG6RlGhnGRABjkAcMNE19uRj24wkre9AKI4gFDABibdoAYJxAGnrhuNdJ1r99Dbbe9Nir_XNhe9-GzsPEOwcZ21FKyrEnpVyXdb0qSYc7JO36T6cdpoSvStS33rUt-5rPCb-9r1sNjxEX2QVwG6Bf742W7-U6U_ff568lDabDM-F_v3MQPplxaylVxfnq300Rdy-eNsRfVF-w9frY_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762480798</pqid></control><display><type>article</type><title>Fast algorithm for calculation of inhomogeneity gradient in magnetic resonance imaging data</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Hui, Cheukkai ; Zhou, Yu Xiang ; Narayana, Ponnada</creator><creatorcontrib>Hui, Cheukkai ; Zhou, Yu Xiang ; Narayana, Ponnada</creatorcontrib><description>Purpose
To develop and implement a new approach for correcting the intensity inhomogeneity in magnetic resonance imaging (MRI) data.
Materials and Methods
The algorithm is based on the assumption that intensity inhomogeneity in MR data is multiplicative and smoothly varying. Using a statistically stable method, the algorithm first calculates the partial derivative of the inhomogeneity gradient across the data. The algorithm then solves for the gradient field and fits it to a parametric surface. It was tested on both simulated and real human and animal MRI data.
Results
The algorithm is shown to restore the homogeneity in all images that were tested. On real human brain images the algorithm demonstrated superior or comparable performance relative to some of the commonly used intensity inhomogeneity correction methods such as SPM, BrainSuite, and N3.
Conclusion
The proposed algorithm provides an alternative method for correcting the intensity inhomogeneity in MR images. It is shown to be fast and its performance is superior or comparable to algorithms described in the published literature. Due to its generality, this algorithm is applicable to MR images of both humans and animals. J. Magn. Reson. Imaging 2010;32:1197–1208. © 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.22344</identifier><identifier>PMID: 21031526</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; Animals ; bias field ; Brain - anatomy & histology ; Computer Simulation ; Humans ; Image Processing, Computer-Assisted ; intensity gradient ; intensity inhomogeneity ; Magnetic Resonance Imaging - methods ; MRI ; Rats ; surface-fitting</subject><ispartof>Journal of magnetic resonance imaging, 2010-11, Vol.32 (5), p.1197-1208</ispartof><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><rights>2010 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4684-8168f72a0b7baa5c2649ed5dfbc75396a085aa68a2b27fb8b7a0fa51f4dc7f4f3</citedby><cites>FETCH-LOGICAL-c4684-8168f72a0b7baa5c2649ed5dfbc75396a085aa68a2b27fb8b7a0fa51f4dc7f4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21031526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hui, Cheukkai</creatorcontrib><creatorcontrib>Zhou, Yu Xiang</creatorcontrib><creatorcontrib>Narayana, Ponnada</creatorcontrib><title>Fast algorithm for calculation of inhomogeneity gradient in magnetic resonance imaging data</title><title>Journal of magnetic resonance imaging</title><addtitle>J. Magn. Reson. Imaging</addtitle><description>Purpose
To develop and implement a new approach for correcting the intensity inhomogeneity in magnetic resonance imaging (MRI) data.
Materials and Methods
The algorithm is based on the assumption that intensity inhomogeneity in MR data is multiplicative and smoothly varying. Using a statistically stable method, the algorithm first calculates the partial derivative of the inhomogeneity gradient across the data. The algorithm then solves for the gradient field and fits it to a parametric surface. It was tested on both simulated and real human and animal MRI data.
Results
The algorithm is shown to restore the homogeneity in all images that were tested. On real human brain images the algorithm demonstrated superior or comparable performance relative to some of the commonly used intensity inhomogeneity correction methods such as SPM, BrainSuite, and N3.
Conclusion
The proposed algorithm provides an alternative method for correcting the intensity inhomogeneity in MR images. It is shown to be fast and its performance is superior or comparable to algorithms described in the published literature. Due to its generality, this algorithm is applicable to MR images of both humans and animals. J. Magn. Reson. Imaging 2010;32:1197–1208. © 2010 Wiley‐Liss, Inc.</description><subject>Algorithms</subject><subject>Animals</subject><subject>bias field</subject><subject>Brain - anatomy & histology</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>intensity gradient</subject><subject>intensity inhomogeneity</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>MRI</subject><subject>Rats</subject><subject>surface-fitting</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PFTEUhhujEUQ3_gDTnYnJQNuZfszSgFwxCGg0JLpoznTaoTjTYtsbvf_ewgWWrs7JyfO-OXkQek3JPiWEHVwvye8z1nbdE7RLOWMN40o8rTvhbUMVkTvoRc7XhJC-7_hztMMoaSsodtHPY8gFwzzF5MvVgl1M2MBs1jMUHwOODvtwFZc42WB92eApwehtKPWMF5iCLd7gZHMMEIzFvt58mPAIBV6iZw7mbF_dzz30_fjDt8OPzen56uTw_WljOqG6RlGhnGRABjkAcMNE19uRj24wkre9AKI4gFDABibdoAYJxAGnrhuNdJ1r99Dbbe9Nir_XNhe9-GzsPEOwcZ21FKyrEnpVyXdb0qSYc7JO36T6cdpoSvStS33rUt-5rPCb-9r1sNjxEX2QVwG6Bf742W7-U6U_ff568lDabDM-F_v3MQPplxaylVxfnq300Rdy-eNsRfVF-w9frY_w</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Hui, Cheukkai</creator><creator>Zhou, Yu Xiang</creator><creator>Narayana, Ponnada</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201011</creationdate><title>Fast algorithm for calculation of inhomogeneity gradient in magnetic resonance imaging data</title><author>Hui, Cheukkai ; Zhou, Yu Xiang ; Narayana, Ponnada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4684-8168f72a0b7baa5c2649ed5dfbc75396a085aa68a2b27fb8b7a0fa51f4dc7f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>bias field</topic><topic>Brain - anatomy & histology</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>intensity gradient</topic><topic>intensity inhomogeneity</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>MRI</topic><topic>Rats</topic><topic>surface-fitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui, Cheukkai</creatorcontrib><creatorcontrib>Zhou, Yu Xiang</creatorcontrib><creatorcontrib>Narayana, Ponnada</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hui, Cheukkai</au><au>Zhou, Yu Xiang</au><au>Narayana, Ponnada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast algorithm for calculation of inhomogeneity gradient in magnetic resonance imaging data</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J. Magn. Reson. Imaging</addtitle><date>2010-11</date><risdate>2010</risdate><volume>32</volume><issue>5</issue><spage>1197</spage><epage>1208</epage><pages>1197-1208</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Purpose
To develop and implement a new approach for correcting the intensity inhomogeneity in magnetic resonance imaging (MRI) data.
Materials and Methods
The algorithm is based on the assumption that intensity inhomogeneity in MR data is multiplicative and smoothly varying. Using a statistically stable method, the algorithm first calculates the partial derivative of the inhomogeneity gradient across the data. The algorithm then solves for the gradient field and fits it to a parametric surface. It was tested on both simulated and real human and animal MRI data.
Results
The algorithm is shown to restore the homogeneity in all images that were tested. On real human brain images the algorithm demonstrated superior or comparable performance relative to some of the commonly used intensity inhomogeneity correction methods such as SPM, BrainSuite, and N3.
Conclusion
The proposed algorithm provides an alternative method for correcting the intensity inhomogeneity in MR images. It is shown to be fast and its performance is superior or comparable to algorithms described in the published literature. Due to its generality, this algorithm is applicable to MR images of both humans and animals. J. Magn. Reson. Imaging 2010;32:1197–1208. © 2010 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21031526</pmid><doi>10.1002/jmri.22344</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-1807 |
ispartof | Journal of magnetic resonance imaging, 2010-11, Vol.32 (5), p.1197-1208 |
issn | 1053-1807 1522-2586 |
language | eng |
recordid | cdi_proquest_miscellaneous_762480798 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Algorithms Animals bias field Brain - anatomy & histology Computer Simulation Humans Image Processing, Computer-Assisted intensity gradient intensity inhomogeneity Magnetic Resonance Imaging - methods MRI Rats surface-fitting |
title | Fast algorithm for calculation of inhomogeneity gradient in magnetic resonance imaging data |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20algorithm%20for%20calculation%20of%20inhomogeneity%20gradient%20in%20magnetic%20resonance%20imaging%20data&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Hui,%20Cheukkai&rft.date=2010-11&rft.volume=32&rft.issue=5&rft.spage=1197&rft.epage=1208&rft.pages=1197-1208&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.22344&rft_dat=%3Cproquest_cross%3E762480798%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4684-8168f72a0b7baa5c2649ed5dfbc75396a085aa68a2b27fb8b7a0fa51f4dc7f4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=762480798&rft_id=info:pmid/21031526&rfr_iscdi=true |