Loading…

Fast algorithm for calculation of inhomogeneity gradient in magnetic resonance imaging data

Purpose To develop and implement a new approach for correcting the intensity inhomogeneity in magnetic resonance imaging (MRI) data. Materials and Methods The algorithm is based on the assumption that intensity inhomogeneity in MR data is multiplicative and smoothly varying. Using a statistically st...

Full description

Saved in:
Bibliographic Details
Published in:Journal of magnetic resonance imaging 2010-11, Vol.32 (5), p.1197-1208
Main Authors: Hui, Cheukkai, Zhou, Yu Xiang, Narayana, Ponnada
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4684-8168f72a0b7baa5c2649ed5dfbc75396a085aa68a2b27fb8b7a0fa51f4dc7f4f3
cites cdi_FETCH-LOGICAL-c4684-8168f72a0b7baa5c2649ed5dfbc75396a085aa68a2b27fb8b7a0fa51f4dc7f4f3
container_end_page 1208
container_issue 5
container_start_page 1197
container_title Journal of magnetic resonance imaging
container_volume 32
creator Hui, Cheukkai
Zhou, Yu Xiang
Narayana, Ponnada
description Purpose To develop and implement a new approach for correcting the intensity inhomogeneity in magnetic resonance imaging (MRI) data. Materials and Methods The algorithm is based on the assumption that intensity inhomogeneity in MR data is multiplicative and smoothly varying. Using a statistically stable method, the algorithm first calculates the partial derivative of the inhomogeneity gradient across the data. The algorithm then solves for the gradient field and fits it to a parametric surface. It was tested on both simulated and real human and animal MRI data. Results The algorithm is shown to restore the homogeneity in all images that were tested. On real human brain images the algorithm demonstrated superior or comparable performance relative to some of the commonly used intensity inhomogeneity correction methods such as SPM, BrainSuite, and N3. Conclusion The proposed algorithm provides an alternative method for correcting the intensity inhomogeneity in MR images. It is shown to be fast and its performance is superior or comparable to algorithms described in the published literature. Due to its generality, this algorithm is applicable to MR images of both humans and animals. J. Magn. Reson. Imaging 2010;32:1197–1208. © 2010 Wiley‐Liss, Inc.
doi_str_mv 10.1002/jmri.22344
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_762480798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>762480798</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4684-8168f72a0b7baa5c2649ed5dfbc75396a085aa68a2b27fb8b7a0fa51f4dc7f4f3</originalsourceid><addsrcrecordid>eNp9kE1PFTEUhhujEUQ3_gDTnYnJQNuZfszSgFwxCGg0JLpoznTaoTjTYtsbvf_ewgWWrs7JyfO-OXkQek3JPiWEHVwvye8z1nbdE7RLOWMN40o8rTvhbUMVkTvoRc7XhJC-7_hztMMoaSsodtHPY8gFwzzF5MvVgl1M2MBs1jMUHwOODvtwFZc42WB92eApwehtKPWMF5iCLd7gZHMMEIzFvt58mPAIBV6iZw7mbF_dzz30_fjDt8OPzen56uTw_WljOqG6RlGhnGRABjkAcMNE19uRj24wkre9AKI4gFDABibdoAYJxAGnrhuNdJ1r99Dbbe9Nir_XNhe9-GzsPEOwcZ21FKyrEnpVyXdb0qSYc7JO36T6cdpoSvStS33rUt-5rPCb-9r1sNjxEX2QVwG6Bf742W7-U6U_ff568lDabDM-F_v3MQPplxaylVxfnq300Rdy-eNsRfVF-w9frY_w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762480798</pqid></control><display><type>article</type><title>Fast algorithm for calculation of inhomogeneity gradient in magnetic resonance imaging data</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Hui, Cheukkai ; Zhou, Yu Xiang ; Narayana, Ponnada</creator><creatorcontrib>Hui, Cheukkai ; Zhou, Yu Xiang ; Narayana, Ponnada</creatorcontrib><description>Purpose To develop and implement a new approach for correcting the intensity inhomogeneity in magnetic resonance imaging (MRI) data. Materials and Methods The algorithm is based on the assumption that intensity inhomogeneity in MR data is multiplicative and smoothly varying. Using a statistically stable method, the algorithm first calculates the partial derivative of the inhomogeneity gradient across the data. The algorithm then solves for the gradient field and fits it to a parametric surface. It was tested on both simulated and real human and animal MRI data. Results The algorithm is shown to restore the homogeneity in all images that were tested. On real human brain images the algorithm demonstrated superior or comparable performance relative to some of the commonly used intensity inhomogeneity correction methods such as SPM, BrainSuite, and N3. Conclusion The proposed algorithm provides an alternative method for correcting the intensity inhomogeneity in MR images. It is shown to be fast and its performance is superior or comparable to algorithms described in the published literature. Due to its generality, this algorithm is applicable to MR images of both humans and animals. J. Magn. Reson. Imaging 2010;32:1197–1208. © 2010 Wiley‐Liss, Inc.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.22344</identifier><identifier>PMID: 21031526</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Algorithms ; Animals ; bias field ; Brain - anatomy &amp; histology ; Computer Simulation ; Humans ; Image Processing, Computer-Assisted ; intensity gradient ; intensity inhomogeneity ; Magnetic Resonance Imaging - methods ; MRI ; Rats ; surface-fitting</subject><ispartof>Journal of magnetic resonance imaging, 2010-11, Vol.32 (5), p.1197-1208</ispartof><rights>Copyright © 2010 Wiley‐Liss, Inc.</rights><rights>2010 Wiley-Liss, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4684-8168f72a0b7baa5c2649ed5dfbc75396a085aa68a2b27fb8b7a0fa51f4dc7f4f3</citedby><cites>FETCH-LOGICAL-c4684-8168f72a0b7baa5c2649ed5dfbc75396a085aa68a2b27fb8b7a0fa51f4dc7f4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/21031526$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hui, Cheukkai</creatorcontrib><creatorcontrib>Zhou, Yu Xiang</creatorcontrib><creatorcontrib>Narayana, Ponnada</creatorcontrib><title>Fast algorithm for calculation of inhomogeneity gradient in magnetic resonance imaging data</title><title>Journal of magnetic resonance imaging</title><addtitle>J. Magn. Reson. Imaging</addtitle><description>Purpose To develop and implement a new approach for correcting the intensity inhomogeneity in magnetic resonance imaging (MRI) data. Materials and Methods The algorithm is based on the assumption that intensity inhomogeneity in MR data is multiplicative and smoothly varying. Using a statistically stable method, the algorithm first calculates the partial derivative of the inhomogeneity gradient across the data. The algorithm then solves for the gradient field and fits it to a parametric surface. It was tested on both simulated and real human and animal MRI data. Results The algorithm is shown to restore the homogeneity in all images that were tested. On real human brain images the algorithm demonstrated superior or comparable performance relative to some of the commonly used intensity inhomogeneity correction methods such as SPM, BrainSuite, and N3. Conclusion The proposed algorithm provides an alternative method for correcting the intensity inhomogeneity in MR images. It is shown to be fast and its performance is superior or comparable to algorithms described in the published literature. Due to its generality, this algorithm is applicable to MR images of both humans and animals. J. Magn. Reson. Imaging 2010;32:1197–1208. © 2010 Wiley‐Liss, Inc.</description><subject>Algorithms</subject><subject>Animals</subject><subject>bias field</subject><subject>Brain - anatomy &amp; histology</subject><subject>Computer Simulation</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>intensity gradient</subject><subject>intensity inhomogeneity</subject><subject>Magnetic Resonance Imaging - methods</subject><subject>MRI</subject><subject>Rats</subject><subject>surface-fitting</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PFTEUhhujEUQ3_gDTnYnJQNuZfszSgFwxCGg0JLpoznTaoTjTYtsbvf_ewgWWrs7JyfO-OXkQek3JPiWEHVwvye8z1nbdE7RLOWMN40o8rTvhbUMVkTvoRc7XhJC-7_hztMMoaSsodtHPY8gFwzzF5MvVgl1M2MBs1jMUHwOODvtwFZc42WB92eApwehtKPWMF5iCLd7gZHMMEIzFvt58mPAIBV6iZw7mbF_dzz30_fjDt8OPzen56uTw_WljOqG6RlGhnGRABjkAcMNE19uRj24wkre9AKI4gFDABibdoAYJxAGnrhuNdJ1r99Dbbe9Nir_XNhe9-GzsPEOwcZ21FKyrEnpVyXdb0qSYc7JO36T6cdpoSvStS33rUt-5rPCb-9r1sNjxEX2QVwG6Bf742W7-U6U_ff568lDabDM-F_v3MQPplxaylVxfnq300Rdy-eNsRfVF-w9frY_w</recordid><startdate>201011</startdate><enddate>201011</enddate><creator>Hui, Cheukkai</creator><creator>Zhou, Yu Xiang</creator><creator>Narayana, Ponnada</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201011</creationdate><title>Fast algorithm for calculation of inhomogeneity gradient in magnetic resonance imaging data</title><author>Hui, Cheukkai ; Zhou, Yu Xiang ; Narayana, Ponnada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4684-8168f72a0b7baa5c2649ed5dfbc75396a085aa68a2b27fb8b7a0fa51f4dc7f4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Animals</topic><topic>bias field</topic><topic>Brain - anatomy &amp; histology</topic><topic>Computer Simulation</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>intensity gradient</topic><topic>intensity inhomogeneity</topic><topic>Magnetic Resonance Imaging - methods</topic><topic>MRI</topic><topic>Rats</topic><topic>surface-fitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui, Cheukkai</creatorcontrib><creatorcontrib>Zhou, Yu Xiang</creatorcontrib><creatorcontrib>Narayana, Ponnada</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hui, Cheukkai</au><au>Zhou, Yu Xiang</au><au>Narayana, Ponnada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast algorithm for calculation of inhomogeneity gradient in magnetic resonance imaging data</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J. Magn. Reson. Imaging</addtitle><date>2010-11</date><risdate>2010</risdate><volume>32</volume><issue>5</issue><spage>1197</spage><epage>1208</epage><pages>1197-1208</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Purpose To develop and implement a new approach for correcting the intensity inhomogeneity in magnetic resonance imaging (MRI) data. Materials and Methods The algorithm is based on the assumption that intensity inhomogeneity in MR data is multiplicative and smoothly varying. Using a statistically stable method, the algorithm first calculates the partial derivative of the inhomogeneity gradient across the data. The algorithm then solves for the gradient field and fits it to a parametric surface. It was tested on both simulated and real human and animal MRI data. Results The algorithm is shown to restore the homogeneity in all images that were tested. On real human brain images the algorithm demonstrated superior or comparable performance relative to some of the commonly used intensity inhomogeneity correction methods such as SPM, BrainSuite, and N3. Conclusion The proposed algorithm provides an alternative method for correcting the intensity inhomogeneity in MR images. It is shown to be fast and its performance is superior or comparable to algorithms described in the published literature. Due to its generality, this algorithm is applicable to MR images of both humans and animals. J. Magn. Reson. Imaging 2010;32:1197–1208. © 2010 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>21031526</pmid><doi>10.1002/jmri.22344</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2010-11, Vol.32 (5), p.1197-1208
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_762480798
source Wiley-Blackwell Read & Publish Collection
subjects Algorithms
Animals
bias field
Brain - anatomy & histology
Computer Simulation
Humans
Image Processing, Computer-Assisted
intensity gradient
intensity inhomogeneity
Magnetic Resonance Imaging - methods
MRI
Rats
surface-fitting
title Fast algorithm for calculation of inhomogeneity gradient in magnetic resonance imaging data
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A31%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20algorithm%20for%20calculation%20of%20inhomogeneity%20gradient%20in%20magnetic%20resonance%20imaging%20data&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Hui,%20Cheukkai&rft.date=2010-11&rft.volume=32&rft.issue=5&rft.spage=1197&rft.epage=1208&rft.pages=1197-1208&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.22344&rft_dat=%3Cproquest_cross%3E762480798%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4684-8168f72a0b7baa5c2649ed5dfbc75396a085aa68a2b27fb8b7a0fa51f4dc7f4f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=762480798&rft_id=info:pmid/21031526&rfr_iscdi=true