Loading…

Hybrid fuzzy least-squares regression analysis in claims reserving with geometric separation method

Claims reserving is obviously necessary for representing future obligations of an insurance company and selection of an accurate method is a major component of the overall claims reserving process. However, the wide range of unquantifiable factors which increase the uncertainty should be considered...

Full description

Saved in:
Bibliographic Details
Published in:Insurance, mathematics & economics mathematics & economics, 2010-10, Vol.47 (2), p.113-122
Main Authors: Apaydin, Aysen, Baser, Furkan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Claims reserving is obviously necessary for representing future obligations of an insurance company and selection of an accurate method is a major component of the overall claims reserving process. However, the wide range of unquantifiable factors which increase the uncertainty should be considered when using any method to estimate the amount of outstanding claims based on past data. Unlike traditional methods in claims analysis, fuzzy set approaches can tolerate imprecision and uncertainty without loss of performance and effectiveness. In this paper, hybrid fuzzy least-squares regression, which is proposed by Chang (2001), is used to predict future claim costs by utilizing the concept of a geometric separation method. We use probabilistic confidence limits for designing triangular fuzzy numbers. Thus, it allows us to reflect variability measures contained in a data set in the prediction of future claim costs. We also propose weighted functions of fuzzy numbers as a defuzzification procedure in order to transform estimated fuzzy claim costs into a crisp real equivalent.
ISSN:0167-6687
1873-5959
DOI:10.1016/j.insmatheco.2010.07.001