Loading…

Mechanism by Which Angiotensin II Stabilizes Messenger RNA for Angiotensinogen

The most important specific regulatory mechanism for hepatic angiotensinogen synthesis and secretion is its stimulation by angiotensin II, the effector peptide of the reninangiotensin system. In the circulating system, this octapeptide is thought to stimulate hepatic angiotensinogen synthesis throug...

Full description

Saved in:
Bibliographic Details
Published in:Hypertension (Dallas, Tex. 1979) Tex. 1979), 1994-01, Vol.23 (1 Suppl I), p.I-120-I-125
Main Authors: Klett, Christoph, Bader, Michael, Ganten, Detlev, Hackenthal, Eberhard
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5217-6ce9b6a90626abcc5b721042bc75613a865bb8ecb58cdd30a12f7f4a84d3803f3
cites
container_end_page I-125
container_issue 1 Suppl I
container_start_page I-120
container_title Hypertension (Dallas, Tex. 1979)
container_volume 23
creator Klett, Christoph
Bader, Michael
Ganten, Detlev
Hackenthal, Eberhard
description The most important specific regulatory mechanism for hepatic angiotensinogen synthesis and secretion is its stimulation by angiotensin II, the effector peptide of the reninangiotensin system. In the circulating system, this octapeptide is thought to stimulate hepatic angiotensinogen synthesis through a positive feedback loop. In the present study, we have identified the intracellular mechanisms leading to an increase in angiotensinogen messenger RNA (mRNA) and secretion. In a [H]uridine-dependent pulse and chase system as well as in hepatocytes in which de novo synthesis of mRNA has been blocked by actinomycin D or 5,6-dichlorobenzimidazole riboside, angiotensin II significantly increased the half-life of angiotensinogen mRNA. In contrast, no effect of angiotensin II on the transcription of angiotensinogen mRNA could be observed in a nuclear run-on assay with nuclei from pretreated hepatocytes, whereas dexamethasone, as a positive control, increased the transcription fivefold to sevenfold. We have isolated a 12-kD protein from the polysomal fraction of isolated hepatocytes, which has an affinity to the nontranslated 3′ tail of angiotensinogen mRNA. For in vitro transcription of this mRNA fragment, the DNA sequence coding for the nontranslated 3′ tail was excised from the vector pRAG 16 and cloned into the transcription vector pGEM 5zf ×. Molecular weight and isoelectric point of the mRNA-binding protein correspond to the parameters of a cytosolic protein that becomes phosphorylated by decreased cyclic AMP concentrations as analyzed in [P]orthophosphate-loaded hepatocytes. In a cytosolic incubation system in which the polysomal fraction was integrated, the mRNA-binding protein increased the half-life of angiotensinogen mRNA significantly. Thus, there is evidence that the angiotensin II-induced stimulation of hepatic angiotensinogen synthesis depends on mRNA stabilization.
doi_str_mv 10.1161/01.hyp.23.1_suppl.i120
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76329163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76329163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5217-6ce9b6a90626abcc5b721042bc75613a865bb8ecb58cdd30a12f7f4a84d3803f3</originalsourceid><addsrcrecordid>eNpdkVGL1DAQgIMo57r6E5Qicm-tmSRN08fl0LuFu1M8RX0KSTbd5symNWk51l9vll0OcV4GZr4Zhm8QegO4AuDwHkPV78eK0ApkmsfRVw4IfoIWUBNWsprTp2iBoWVlC_DjOXqR0j3GwBhrztCZIIJQxhbo9saaXgWXdoXeF997Z_piFbZumGxILhTrdXE3Ke28-2NTcWNTsmFrY_HldlV0Q_yXHbY2vETPOuWTfXXKS_Tt44evF1fl9afL9cXqujQ1gabkxraaqxZzwpU2ptYNAcyINk3NgSrBa62FNboWZrOhWAHpmo4pwTZUYNrRJTo_7h3j8Hu2aZI7l4z1XgU7zEk2nJIWOM3g2__A-2GOId8mCa4JbyCbWiJ-hEwcUoq2k2N0OxX3ErA82JYY5NXPz5JQCfLuYFuus-08-Pq0fdY7u3kcO-nN_XenvkpG-S6qYFx6xGhbMyEOR7Ij9jD4ycb0y88PNsreKj_1EudghIsS2pZhyE8sc4U09C_IHplo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205267156</pqid></control><display><type>article</type><title>Mechanism by Which Angiotensin II Stabilizes Messenger RNA for Angiotensinogen</title><source>EZB Electronic Journals Library</source><creator>Klett, Christoph ; Bader, Michael ; Ganten, Detlev ; Hackenthal, Eberhard</creator><creatorcontrib>Klett, Christoph ; Bader, Michael ; Ganten, Detlev ; Hackenthal, Eberhard</creatorcontrib><description>The most important specific regulatory mechanism for hepatic angiotensinogen synthesis and secretion is its stimulation by angiotensin II, the effector peptide of the reninangiotensin system. In the circulating system, this octapeptide is thought to stimulate hepatic angiotensinogen synthesis through a positive feedback loop. In the present study, we have identified the intracellular mechanisms leading to an increase in angiotensinogen messenger RNA (mRNA) and secretion. In a [H]uridine-dependent pulse and chase system as well as in hepatocytes in which de novo synthesis of mRNA has been blocked by actinomycin D or 5,6-dichlorobenzimidazole riboside, angiotensin II significantly increased the half-life of angiotensinogen mRNA. In contrast, no effect of angiotensin II on the transcription of angiotensinogen mRNA could be observed in a nuclear run-on assay with nuclei from pretreated hepatocytes, whereas dexamethasone, as a positive control, increased the transcription fivefold to sevenfold. We have isolated a 12-kD protein from the polysomal fraction of isolated hepatocytes, which has an affinity to the nontranslated 3′ tail of angiotensinogen mRNA. For in vitro transcription of this mRNA fragment, the DNA sequence coding for the nontranslated 3′ tail was excised from the vector pRAG 16 and cloned into the transcription vector pGEM 5zf ×. Molecular weight and isoelectric point of the mRNA-binding protein correspond to the parameters of a cytosolic protein that becomes phosphorylated by decreased cyclic AMP concentrations as analyzed in [P]orthophosphate-loaded hepatocytes. In a cytosolic incubation system in which the polysomal fraction was integrated, the mRNA-binding protein increased the half-life of angiotensinogen mRNA significantly. Thus, there is evidence that the angiotensin II-induced stimulation of hepatic angiotensinogen synthesis depends on mRNA stabilization.</description><identifier>ISSN: 0194-911X</identifier><identifier>EISSN: 1524-4563</identifier><identifier>DOI: 10.1161/01.hyp.23.1_suppl.i120</identifier><identifier>PMID: 8282344</identifier><identifier>CODEN: HPRTDN</identifier><language>eng</language><publisher>Philadelphia, PA: American Heart Association, Inc</publisher><subject>Angiotensin II - pharmacology ; Angiotensinogen - biosynthesis ; Angiotensinogen - pharmacology ; Animals ; Biological and medical sciences ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Cell-Free System ; Cells, Cultured ; Cyclic AMP - analogs &amp; derivatives ; Cyclic AMP - pharmacology ; Cyclic AMP-Dependent Protein Kinases - antagonists &amp; inhibitors ; Dactinomycin - pharmacology ; Dichlororibofuranosylbenzimidazole - pharmacology ; Endocrine kidney. Renin-angiotensin-aldosterone system ; Fundamental and applied biological sciences. Psychology ; Guanfacine - pharmacology ; Kinetics ; Liver - drug effects ; Liver - metabolism ; Male ; Phosphates - metabolism ; Phosphoproteins - isolation &amp; purification ; Phosphoproteins - metabolism ; Phosphorylation ; Polyribosomes - metabolism ; Rats ; Rats, Sprague-Dawley ; RNA, Messenger - biosynthesis ; RNA, Messenger - metabolism ; Thionucleotides - pharmacology ; Time Factors ; Uridine - metabolism ; Vertebrates: endocrinology</subject><ispartof>Hypertension (Dallas, Tex. 1979), 1994-01, Vol.23 (1 Suppl I), p.I-120-I-125</ispartof><rights>1994 American Heart Association, Inc.</rights><rights>1994 INIST-CNRS</rights><rights>Copyright American Heart Association, Inc. Jan 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5217-6ce9b6a90626abcc5b721042bc75613a865bb8ecb58cdd30a12f7f4a84d3803f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,4050,4051,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=3954883$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8282344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klett, Christoph</creatorcontrib><creatorcontrib>Bader, Michael</creatorcontrib><creatorcontrib>Ganten, Detlev</creatorcontrib><creatorcontrib>Hackenthal, Eberhard</creatorcontrib><title>Mechanism by Which Angiotensin II Stabilizes Messenger RNA for Angiotensinogen</title><title>Hypertension (Dallas, Tex. 1979)</title><addtitle>Hypertension</addtitle><description>The most important specific regulatory mechanism for hepatic angiotensinogen synthesis and secretion is its stimulation by angiotensin II, the effector peptide of the reninangiotensin system. In the circulating system, this octapeptide is thought to stimulate hepatic angiotensinogen synthesis through a positive feedback loop. In the present study, we have identified the intracellular mechanisms leading to an increase in angiotensinogen messenger RNA (mRNA) and secretion. In a [H]uridine-dependent pulse and chase system as well as in hepatocytes in which de novo synthesis of mRNA has been blocked by actinomycin D or 5,6-dichlorobenzimidazole riboside, angiotensin II significantly increased the half-life of angiotensinogen mRNA. In contrast, no effect of angiotensin II on the transcription of angiotensinogen mRNA could be observed in a nuclear run-on assay with nuclei from pretreated hepatocytes, whereas dexamethasone, as a positive control, increased the transcription fivefold to sevenfold. We have isolated a 12-kD protein from the polysomal fraction of isolated hepatocytes, which has an affinity to the nontranslated 3′ tail of angiotensinogen mRNA. For in vitro transcription of this mRNA fragment, the DNA sequence coding for the nontranslated 3′ tail was excised from the vector pRAG 16 and cloned into the transcription vector pGEM 5zf ×. Molecular weight and isoelectric point of the mRNA-binding protein correspond to the parameters of a cytosolic protein that becomes phosphorylated by decreased cyclic AMP concentrations as analyzed in [P]orthophosphate-loaded hepatocytes. In a cytosolic incubation system in which the polysomal fraction was integrated, the mRNA-binding protein increased the half-life of angiotensinogen mRNA significantly. Thus, there is evidence that the angiotensin II-induced stimulation of hepatic angiotensinogen synthesis depends on mRNA stabilization.</description><subject>Angiotensin II - pharmacology</subject><subject>Angiotensinogen - biosynthesis</subject><subject>Angiotensinogen - pharmacology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell-Free System</subject><subject>Cells, Cultured</subject><subject>Cyclic AMP - analogs &amp; derivatives</subject><subject>Cyclic AMP - pharmacology</subject><subject>Cyclic AMP-Dependent Protein Kinases - antagonists &amp; inhibitors</subject><subject>Dactinomycin - pharmacology</subject><subject>Dichlororibofuranosylbenzimidazole - pharmacology</subject><subject>Endocrine kidney. Renin-angiotensin-aldosterone system</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Guanfacine - pharmacology</subject><subject>Kinetics</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Phosphates - metabolism</subject><subject>Phosphoproteins - isolation &amp; purification</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation</subject><subject>Polyribosomes - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Messenger - metabolism</subject><subject>Thionucleotides - pharmacology</subject><subject>Time Factors</subject><subject>Uridine - metabolism</subject><subject>Vertebrates: endocrinology</subject><issn>0194-911X</issn><issn>1524-4563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpdkVGL1DAQgIMo57r6E5Qicm-tmSRN08fl0LuFu1M8RX0KSTbd5symNWk51l9vll0OcV4GZr4Zhm8QegO4AuDwHkPV78eK0ApkmsfRVw4IfoIWUBNWsprTp2iBoWVlC_DjOXqR0j3GwBhrztCZIIJQxhbo9saaXgWXdoXeF997Z_piFbZumGxILhTrdXE3Ke28-2NTcWNTsmFrY_HldlV0Q_yXHbY2vETPOuWTfXXKS_Tt44evF1fl9afL9cXqujQ1gabkxraaqxZzwpU2ptYNAcyINk3NgSrBa62FNboWZrOhWAHpmo4pwTZUYNrRJTo_7h3j8Hu2aZI7l4z1XgU7zEk2nJIWOM3g2__A-2GOId8mCa4JbyCbWiJ-hEwcUoq2k2N0OxX3ErA82JYY5NXPz5JQCfLuYFuus-08-Pq0fdY7u3kcO-nN_XenvkpG-S6qYFx6xGhbMyEOR7Ij9jD4ycb0y88PNsreKj_1EudghIsS2pZhyE8sc4U09C_IHplo</recordid><startdate>199401</startdate><enddate>199401</enddate><creator>Klett, Christoph</creator><creator>Bader, Michael</creator><creator>Ganten, Detlev</creator><creator>Hackenthal, Eberhard</creator><general>American Heart Association, Inc</general><general>Lippincott</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>199401</creationdate><title>Mechanism by Which Angiotensin II Stabilizes Messenger RNA for Angiotensinogen</title><author>Klett, Christoph ; Bader, Michael ; Ganten, Detlev ; Hackenthal, Eberhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5217-6ce9b6a90626abcc5b721042bc75613a865bb8ecb58cdd30a12f7f4a84d3803f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Angiotensin II - pharmacology</topic><topic>Angiotensinogen - biosynthesis</topic><topic>Angiotensinogen - pharmacology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell-Free System</topic><topic>Cells, Cultured</topic><topic>Cyclic AMP - analogs &amp; derivatives</topic><topic>Cyclic AMP - pharmacology</topic><topic>Cyclic AMP-Dependent Protein Kinases - antagonists &amp; inhibitors</topic><topic>Dactinomycin - pharmacology</topic><topic>Dichlororibofuranosylbenzimidazole - pharmacology</topic><topic>Endocrine kidney. Renin-angiotensin-aldosterone system</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Guanfacine - pharmacology</topic><topic>Kinetics</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Phosphates - metabolism</topic><topic>Phosphoproteins - isolation &amp; purification</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation</topic><topic>Polyribosomes - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Messenger - metabolism</topic><topic>Thionucleotides - pharmacology</topic><topic>Time Factors</topic><topic>Uridine - metabolism</topic><topic>Vertebrates: endocrinology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klett, Christoph</creatorcontrib><creatorcontrib>Bader, Michael</creatorcontrib><creatorcontrib>Ganten, Detlev</creatorcontrib><creatorcontrib>Hackenthal, Eberhard</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Hypertension (Dallas, Tex. 1979)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klett, Christoph</au><au>Bader, Michael</au><au>Ganten, Detlev</au><au>Hackenthal, Eberhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism by Which Angiotensin II Stabilizes Messenger RNA for Angiotensinogen</atitle><jtitle>Hypertension (Dallas, Tex. 1979)</jtitle><addtitle>Hypertension</addtitle><date>1994-01</date><risdate>1994</risdate><volume>23</volume><issue>1 Suppl I</issue><spage>I-120</spage><epage>I-125</epage><pages>I-120-I-125</pages><issn>0194-911X</issn><eissn>1524-4563</eissn><coden>HPRTDN</coden><abstract>The most important specific regulatory mechanism for hepatic angiotensinogen synthesis and secretion is its stimulation by angiotensin II, the effector peptide of the reninangiotensin system. In the circulating system, this octapeptide is thought to stimulate hepatic angiotensinogen synthesis through a positive feedback loop. In the present study, we have identified the intracellular mechanisms leading to an increase in angiotensinogen messenger RNA (mRNA) and secretion. In a [H]uridine-dependent pulse and chase system as well as in hepatocytes in which de novo synthesis of mRNA has been blocked by actinomycin D or 5,6-dichlorobenzimidazole riboside, angiotensin II significantly increased the half-life of angiotensinogen mRNA. In contrast, no effect of angiotensin II on the transcription of angiotensinogen mRNA could be observed in a nuclear run-on assay with nuclei from pretreated hepatocytes, whereas dexamethasone, as a positive control, increased the transcription fivefold to sevenfold. We have isolated a 12-kD protein from the polysomal fraction of isolated hepatocytes, which has an affinity to the nontranslated 3′ tail of angiotensinogen mRNA. For in vitro transcription of this mRNA fragment, the DNA sequence coding for the nontranslated 3′ tail was excised from the vector pRAG 16 and cloned into the transcription vector pGEM 5zf ×. Molecular weight and isoelectric point of the mRNA-binding protein correspond to the parameters of a cytosolic protein that becomes phosphorylated by decreased cyclic AMP concentrations as analyzed in [P]orthophosphate-loaded hepatocytes. In a cytosolic incubation system in which the polysomal fraction was integrated, the mRNA-binding protein increased the half-life of angiotensinogen mRNA significantly. Thus, there is evidence that the angiotensin II-induced stimulation of hepatic angiotensinogen synthesis depends on mRNA stabilization.</abstract><cop>Philadelphia, PA</cop><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>8282344</pmid><doi>10.1161/01.hyp.23.1_suppl.i120</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0194-911X
ispartof Hypertension (Dallas, Tex. 1979), 1994-01, Vol.23 (1 Suppl I), p.I-120-I-125
issn 0194-911X
1524-4563
language eng
recordid cdi_proquest_miscellaneous_76329163
source EZB Electronic Journals Library
subjects Angiotensin II - pharmacology
Angiotensinogen - biosynthesis
Angiotensinogen - pharmacology
Animals
Biological and medical sciences
Cell Nucleus - drug effects
Cell Nucleus - metabolism
Cell-Free System
Cells, Cultured
Cyclic AMP - analogs & derivatives
Cyclic AMP - pharmacology
Cyclic AMP-Dependent Protein Kinases - antagonists & inhibitors
Dactinomycin - pharmacology
Dichlororibofuranosylbenzimidazole - pharmacology
Endocrine kidney. Renin-angiotensin-aldosterone system
Fundamental and applied biological sciences. Psychology
Guanfacine - pharmacology
Kinetics
Liver - drug effects
Liver - metabolism
Male
Phosphates - metabolism
Phosphoproteins - isolation & purification
Phosphoproteins - metabolism
Phosphorylation
Polyribosomes - metabolism
Rats
Rats, Sprague-Dawley
RNA, Messenger - biosynthesis
RNA, Messenger - metabolism
Thionucleotides - pharmacology
Time Factors
Uridine - metabolism
Vertebrates: endocrinology
title Mechanism by Which Angiotensin II Stabilizes Messenger RNA for Angiotensinogen
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20by%20Which%20Angiotensin%20II%20Stabilizes%20Messenger%20RNA%20for%20Angiotensinogen&rft.jtitle=Hypertension%20(Dallas,%20Tex.%201979)&rft.au=Klett,%20Christoph&rft.date=1994-01&rft.volume=23&rft.issue=1%20Suppl%20I&rft.spage=I-120&rft.epage=I-125&rft.pages=I-120-I-125&rft.issn=0194-911X&rft.eissn=1524-4563&rft.coden=HPRTDN&rft_id=info:doi/10.1161/01.hyp.23.1_suppl.i120&rft_dat=%3Cproquest_cross%3E76329163%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5217-6ce9b6a90626abcc5b721042bc75613a865bb8ecb58cdd30a12f7f4a84d3803f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=205267156&rft_id=info:pmid/8282344&rfr_iscdi=true