Loading…
Mechanism by Which Angiotensin II Stabilizes Messenger RNA for Angiotensinogen
The most important specific regulatory mechanism for hepatic angiotensinogen synthesis and secretion is its stimulation by angiotensin II, the effector peptide of the reninangiotensin system. In the circulating system, this octapeptide is thought to stimulate hepatic angiotensinogen synthesis throug...
Saved in:
Published in: | Hypertension (Dallas, Tex. 1979) Tex. 1979), 1994-01, Vol.23 (1 Suppl I), p.I-120-I-125 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5217-6ce9b6a90626abcc5b721042bc75613a865bb8ecb58cdd30a12f7f4a84d3803f3 |
---|---|
cites | |
container_end_page | I-125 |
container_issue | 1 Suppl I |
container_start_page | I-120 |
container_title | Hypertension (Dallas, Tex. 1979) |
container_volume | 23 |
creator | Klett, Christoph Bader, Michael Ganten, Detlev Hackenthal, Eberhard |
description | The most important specific regulatory mechanism for hepatic angiotensinogen synthesis and secretion is its stimulation by angiotensin II, the effector peptide of the reninangiotensin system. In the circulating system, this octapeptide is thought to stimulate hepatic angiotensinogen synthesis through a positive feedback loop. In the present study, we have identified the intracellular mechanisms leading to an increase in angiotensinogen messenger RNA (mRNA) and secretion. In a [H]uridine-dependent pulse and chase system as well as in hepatocytes in which de novo synthesis of mRNA has been blocked by actinomycin D or 5,6-dichlorobenzimidazole riboside, angiotensin II significantly increased the half-life of angiotensinogen mRNA. In contrast, no effect of angiotensin II on the transcription of angiotensinogen mRNA could be observed in a nuclear run-on assay with nuclei from pretreated hepatocytes, whereas dexamethasone, as a positive control, increased the transcription fivefold to sevenfold. We have isolated a 12-kD protein from the polysomal fraction of isolated hepatocytes, which has an affinity to the nontranslated 3′ tail of angiotensinogen mRNA. For in vitro transcription of this mRNA fragment, the DNA sequence coding for the nontranslated 3′ tail was excised from the vector pRAG 16 and cloned into the transcription vector pGEM 5zf ×. Molecular weight and isoelectric point of the mRNA-binding protein correspond to the parameters of a cytosolic protein that becomes phosphorylated by decreased cyclic AMP concentrations as analyzed in [P]orthophosphate-loaded hepatocytes. In a cytosolic incubation system in which the polysomal fraction was integrated, the mRNA-binding protein increased the half-life of angiotensinogen mRNA significantly. Thus, there is evidence that the angiotensin II-induced stimulation of hepatic angiotensinogen synthesis depends on mRNA stabilization. |
doi_str_mv | 10.1161/01.hyp.23.1_suppl.i120 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_76329163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>76329163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5217-6ce9b6a90626abcc5b721042bc75613a865bb8ecb58cdd30a12f7f4a84d3803f3</originalsourceid><addsrcrecordid>eNpdkVGL1DAQgIMo57r6E5Qicm-tmSRN08fl0LuFu1M8RX0KSTbd5symNWk51l9vll0OcV4GZr4Zhm8QegO4AuDwHkPV78eK0ApkmsfRVw4IfoIWUBNWsprTp2iBoWVlC_DjOXqR0j3GwBhrztCZIIJQxhbo9saaXgWXdoXeF997Z_piFbZumGxILhTrdXE3Ke28-2NTcWNTsmFrY_HldlV0Q_yXHbY2vETPOuWTfXXKS_Tt44evF1fl9afL9cXqujQ1gabkxraaqxZzwpU2ptYNAcyINk3NgSrBa62FNboWZrOhWAHpmo4pwTZUYNrRJTo_7h3j8Hu2aZI7l4z1XgU7zEk2nJIWOM3g2__A-2GOId8mCa4JbyCbWiJ-hEwcUoq2k2N0OxX3ErA82JYY5NXPz5JQCfLuYFuus-08-Pq0fdY7u3kcO-nN_XenvkpG-S6qYFx6xGhbMyEOR7Ij9jD4ycb0y88PNsreKj_1EudghIsS2pZhyE8sc4U09C_IHplo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205267156</pqid></control><display><type>article</type><title>Mechanism by Which Angiotensin II Stabilizes Messenger RNA for Angiotensinogen</title><source>EZB Electronic Journals Library</source><creator>Klett, Christoph ; Bader, Michael ; Ganten, Detlev ; Hackenthal, Eberhard</creator><creatorcontrib>Klett, Christoph ; Bader, Michael ; Ganten, Detlev ; Hackenthal, Eberhard</creatorcontrib><description>The most important specific regulatory mechanism for hepatic angiotensinogen synthesis and secretion is its stimulation by angiotensin II, the effector peptide of the reninangiotensin system. In the circulating system, this octapeptide is thought to stimulate hepatic angiotensinogen synthesis through a positive feedback loop. In the present study, we have identified the intracellular mechanisms leading to an increase in angiotensinogen messenger RNA (mRNA) and secretion. In a [H]uridine-dependent pulse and chase system as well as in hepatocytes in which de novo synthesis of mRNA has been blocked by actinomycin D or 5,6-dichlorobenzimidazole riboside, angiotensin II significantly increased the half-life of angiotensinogen mRNA. In contrast, no effect of angiotensin II on the transcription of angiotensinogen mRNA could be observed in a nuclear run-on assay with nuclei from pretreated hepatocytes, whereas dexamethasone, as a positive control, increased the transcription fivefold to sevenfold. We have isolated a 12-kD protein from the polysomal fraction of isolated hepatocytes, which has an affinity to the nontranslated 3′ tail of angiotensinogen mRNA. For in vitro transcription of this mRNA fragment, the DNA sequence coding for the nontranslated 3′ tail was excised from the vector pRAG 16 and cloned into the transcription vector pGEM 5zf ×. Molecular weight and isoelectric point of the mRNA-binding protein correspond to the parameters of a cytosolic protein that becomes phosphorylated by decreased cyclic AMP concentrations as analyzed in [P]orthophosphate-loaded hepatocytes. In a cytosolic incubation system in which the polysomal fraction was integrated, the mRNA-binding protein increased the half-life of angiotensinogen mRNA significantly. Thus, there is evidence that the angiotensin II-induced stimulation of hepatic angiotensinogen synthesis depends on mRNA stabilization.</description><identifier>ISSN: 0194-911X</identifier><identifier>EISSN: 1524-4563</identifier><identifier>DOI: 10.1161/01.hyp.23.1_suppl.i120</identifier><identifier>PMID: 8282344</identifier><identifier>CODEN: HPRTDN</identifier><language>eng</language><publisher>Philadelphia, PA: American Heart Association, Inc</publisher><subject>Angiotensin II - pharmacology ; Angiotensinogen - biosynthesis ; Angiotensinogen - pharmacology ; Animals ; Biological and medical sciences ; Cell Nucleus - drug effects ; Cell Nucleus - metabolism ; Cell-Free System ; Cells, Cultured ; Cyclic AMP - analogs & derivatives ; Cyclic AMP - pharmacology ; Cyclic AMP-Dependent Protein Kinases - antagonists & inhibitors ; Dactinomycin - pharmacology ; Dichlororibofuranosylbenzimidazole - pharmacology ; Endocrine kidney. Renin-angiotensin-aldosterone system ; Fundamental and applied biological sciences. Psychology ; Guanfacine - pharmacology ; Kinetics ; Liver - drug effects ; Liver - metabolism ; Male ; Phosphates - metabolism ; Phosphoproteins - isolation & purification ; Phosphoproteins - metabolism ; Phosphorylation ; Polyribosomes - metabolism ; Rats ; Rats, Sprague-Dawley ; RNA, Messenger - biosynthesis ; RNA, Messenger - metabolism ; Thionucleotides - pharmacology ; Time Factors ; Uridine - metabolism ; Vertebrates: endocrinology</subject><ispartof>Hypertension (Dallas, Tex. 1979), 1994-01, Vol.23 (1 Suppl I), p.I-120-I-125</ispartof><rights>1994 American Heart Association, Inc.</rights><rights>1994 INIST-CNRS</rights><rights>Copyright American Heart Association, Inc. Jan 1994</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5217-6ce9b6a90626abcc5b721042bc75613a865bb8ecb58cdd30a12f7f4a84d3803f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,4050,4051,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=3954883$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8282344$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klett, Christoph</creatorcontrib><creatorcontrib>Bader, Michael</creatorcontrib><creatorcontrib>Ganten, Detlev</creatorcontrib><creatorcontrib>Hackenthal, Eberhard</creatorcontrib><title>Mechanism by Which Angiotensin II Stabilizes Messenger RNA for Angiotensinogen</title><title>Hypertension (Dallas, Tex. 1979)</title><addtitle>Hypertension</addtitle><description>The most important specific regulatory mechanism for hepatic angiotensinogen synthesis and secretion is its stimulation by angiotensin II, the effector peptide of the reninangiotensin system. In the circulating system, this octapeptide is thought to stimulate hepatic angiotensinogen synthesis through a positive feedback loop. In the present study, we have identified the intracellular mechanisms leading to an increase in angiotensinogen messenger RNA (mRNA) and secretion. In a [H]uridine-dependent pulse and chase system as well as in hepatocytes in which de novo synthesis of mRNA has been blocked by actinomycin D or 5,6-dichlorobenzimidazole riboside, angiotensin II significantly increased the half-life of angiotensinogen mRNA. In contrast, no effect of angiotensin II on the transcription of angiotensinogen mRNA could be observed in a nuclear run-on assay with nuclei from pretreated hepatocytes, whereas dexamethasone, as a positive control, increased the transcription fivefold to sevenfold. We have isolated a 12-kD protein from the polysomal fraction of isolated hepatocytes, which has an affinity to the nontranslated 3′ tail of angiotensinogen mRNA. For in vitro transcription of this mRNA fragment, the DNA sequence coding for the nontranslated 3′ tail was excised from the vector pRAG 16 and cloned into the transcription vector pGEM 5zf ×. Molecular weight and isoelectric point of the mRNA-binding protein correspond to the parameters of a cytosolic protein that becomes phosphorylated by decreased cyclic AMP concentrations as analyzed in [P]orthophosphate-loaded hepatocytes. In a cytosolic incubation system in which the polysomal fraction was integrated, the mRNA-binding protein increased the half-life of angiotensinogen mRNA significantly. Thus, there is evidence that the angiotensin II-induced stimulation of hepatic angiotensinogen synthesis depends on mRNA stabilization.</description><subject>Angiotensin II - pharmacology</subject><subject>Angiotensinogen - biosynthesis</subject><subject>Angiotensinogen - pharmacology</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell Nucleus - drug effects</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell-Free System</subject><subject>Cells, Cultured</subject><subject>Cyclic AMP - analogs & derivatives</subject><subject>Cyclic AMP - pharmacology</subject><subject>Cyclic AMP-Dependent Protein Kinases - antagonists & inhibitors</subject><subject>Dactinomycin - pharmacology</subject><subject>Dichlororibofuranosylbenzimidazole - pharmacology</subject><subject>Endocrine kidney. Renin-angiotensin-aldosterone system</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Guanfacine - pharmacology</subject><subject>Kinetics</subject><subject>Liver - drug effects</subject><subject>Liver - metabolism</subject><subject>Male</subject><subject>Phosphates - metabolism</subject><subject>Phosphoproteins - isolation & purification</subject><subject>Phosphoproteins - metabolism</subject><subject>Phosphorylation</subject><subject>Polyribosomes - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA, Messenger - biosynthesis</subject><subject>RNA, Messenger - metabolism</subject><subject>Thionucleotides - pharmacology</subject><subject>Time Factors</subject><subject>Uridine - metabolism</subject><subject>Vertebrates: endocrinology</subject><issn>0194-911X</issn><issn>1524-4563</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1994</creationdate><recordtype>article</recordtype><recordid>eNpdkVGL1DAQgIMo57r6E5Qicm-tmSRN08fl0LuFu1M8RX0KSTbd5symNWk51l9vll0OcV4GZr4Zhm8QegO4AuDwHkPV78eK0ApkmsfRVw4IfoIWUBNWsprTp2iBoWVlC_DjOXqR0j3GwBhrztCZIIJQxhbo9saaXgWXdoXeF997Z_piFbZumGxILhTrdXE3Ke28-2NTcWNTsmFrY_HldlV0Q_yXHbY2vETPOuWTfXXKS_Tt44evF1fl9afL9cXqujQ1gabkxraaqxZzwpU2ptYNAcyINk3NgSrBa62FNboWZrOhWAHpmo4pwTZUYNrRJTo_7h3j8Hu2aZI7l4z1XgU7zEk2nJIWOM3g2__A-2GOId8mCa4JbyCbWiJ-hEwcUoq2k2N0OxX3ErA82JYY5NXPz5JQCfLuYFuus-08-Pq0fdY7u3kcO-nN_XenvkpG-S6qYFx6xGhbMyEOR7Ij9jD4ycb0y88PNsreKj_1EudghIsS2pZhyE8sc4U09C_IHplo</recordid><startdate>199401</startdate><enddate>199401</enddate><creator>Klett, Christoph</creator><creator>Bader, Michael</creator><creator>Ganten, Detlev</creator><creator>Hackenthal, Eberhard</creator><general>American Heart Association, Inc</general><general>Lippincott</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>199401</creationdate><title>Mechanism by Which Angiotensin II Stabilizes Messenger RNA for Angiotensinogen</title><author>Klett, Christoph ; Bader, Michael ; Ganten, Detlev ; Hackenthal, Eberhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5217-6ce9b6a90626abcc5b721042bc75613a865bb8ecb58cdd30a12f7f4a84d3803f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1994</creationdate><topic>Angiotensin II - pharmacology</topic><topic>Angiotensinogen - biosynthesis</topic><topic>Angiotensinogen - pharmacology</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell Nucleus - drug effects</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell-Free System</topic><topic>Cells, Cultured</topic><topic>Cyclic AMP - analogs & derivatives</topic><topic>Cyclic AMP - pharmacology</topic><topic>Cyclic AMP-Dependent Protein Kinases - antagonists & inhibitors</topic><topic>Dactinomycin - pharmacology</topic><topic>Dichlororibofuranosylbenzimidazole - pharmacology</topic><topic>Endocrine kidney. Renin-angiotensin-aldosterone system</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Guanfacine - pharmacology</topic><topic>Kinetics</topic><topic>Liver - drug effects</topic><topic>Liver - metabolism</topic><topic>Male</topic><topic>Phosphates - metabolism</topic><topic>Phosphoproteins - isolation & purification</topic><topic>Phosphoproteins - metabolism</topic><topic>Phosphorylation</topic><topic>Polyribosomes - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA, Messenger - biosynthesis</topic><topic>RNA, Messenger - metabolism</topic><topic>Thionucleotides - pharmacology</topic><topic>Time Factors</topic><topic>Uridine - metabolism</topic><topic>Vertebrates: endocrinology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klett, Christoph</creatorcontrib><creatorcontrib>Bader, Michael</creatorcontrib><creatorcontrib>Ganten, Detlev</creatorcontrib><creatorcontrib>Hackenthal, Eberhard</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Hypertension (Dallas, Tex. 1979)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klett, Christoph</au><au>Bader, Michael</au><au>Ganten, Detlev</au><au>Hackenthal, Eberhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism by Which Angiotensin II Stabilizes Messenger RNA for Angiotensinogen</atitle><jtitle>Hypertension (Dallas, Tex. 1979)</jtitle><addtitle>Hypertension</addtitle><date>1994-01</date><risdate>1994</risdate><volume>23</volume><issue>1 Suppl I</issue><spage>I-120</spage><epage>I-125</epage><pages>I-120-I-125</pages><issn>0194-911X</issn><eissn>1524-4563</eissn><coden>HPRTDN</coden><abstract>The most important specific regulatory mechanism for hepatic angiotensinogen synthesis and secretion is its stimulation by angiotensin II, the effector peptide of the reninangiotensin system. In the circulating system, this octapeptide is thought to stimulate hepatic angiotensinogen synthesis through a positive feedback loop. In the present study, we have identified the intracellular mechanisms leading to an increase in angiotensinogen messenger RNA (mRNA) and secretion. In a [H]uridine-dependent pulse and chase system as well as in hepatocytes in which de novo synthesis of mRNA has been blocked by actinomycin D or 5,6-dichlorobenzimidazole riboside, angiotensin II significantly increased the half-life of angiotensinogen mRNA. In contrast, no effect of angiotensin II on the transcription of angiotensinogen mRNA could be observed in a nuclear run-on assay with nuclei from pretreated hepatocytes, whereas dexamethasone, as a positive control, increased the transcription fivefold to sevenfold. We have isolated a 12-kD protein from the polysomal fraction of isolated hepatocytes, which has an affinity to the nontranslated 3′ tail of angiotensinogen mRNA. For in vitro transcription of this mRNA fragment, the DNA sequence coding for the nontranslated 3′ tail was excised from the vector pRAG 16 and cloned into the transcription vector pGEM 5zf ×. Molecular weight and isoelectric point of the mRNA-binding protein correspond to the parameters of a cytosolic protein that becomes phosphorylated by decreased cyclic AMP concentrations as analyzed in [P]orthophosphate-loaded hepatocytes. In a cytosolic incubation system in which the polysomal fraction was integrated, the mRNA-binding protein increased the half-life of angiotensinogen mRNA significantly. Thus, there is evidence that the angiotensin II-induced stimulation of hepatic angiotensinogen synthesis depends on mRNA stabilization.</abstract><cop>Philadelphia, PA</cop><cop>Hagerstown, MD</cop><pub>American Heart Association, Inc</pub><pmid>8282344</pmid><doi>10.1161/01.hyp.23.1_suppl.i120</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0194-911X |
ispartof | Hypertension (Dallas, Tex. 1979), 1994-01, Vol.23 (1 Suppl I), p.I-120-I-125 |
issn | 0194-911X 1524-4563 |
language | eng |
recordid | cdi_proquest_miscellaneous_76329163 |
source | EZB Electronic Journals Library |
subjects | Angiotensin II - pharmacology Angiotensinogen - biosynthesis Angiotensinogen - pharmacology Animals Biological and medical sciences Cell Nucleus - drug effects Cell Nucleus - metabolism Cell-Free System Cells, Cultured Cyclic AMP - analogs & derivatives Cyclic AMP - pharmacology Cyclic AMP-Dependent Protein Kinases - antagonists & inhibitors Dactinomycin - pharmacology Dichlororibofuranosylbenzimidazole - pharmacology Endocrine kidney. Renin-angiotensin-aldosterone system Fundamental and applied biological sciences. Psychology Guanfacine - pharmacology Kinetics Liver - drug effects Liver - metabolism Male Phosphates - metabolism Phosphoproteins - isolation & purification Phosphoproteins - metabolism Phosphorylation Polyribosomes - metabolism Rats Rats, Sprague-Dawley RNA, Messenger - biosynthesis RNA, Messenger - metabolism Thionucleotides - pharmacology Time Factors Uridine - metabolism Vertebrates: endocrinology |
title | Mechanism by Which Angiotensin II Stabilizes Messenger RNA for Angiotensinogen |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A52%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20by%20Which%20Angiotensin%20II%20Stabilizes%20Messenger%20RNA%20for%20Angiotensinogen&rft.jtitle=Hypertension%20(Dallas,%20Tex.%201979)&rft.au=Klett,%20Christoph&rft.date=1994-01&rft.volume=23&rft.issue=1%20Suppl%20I&rft.spage=I-120&rft.epage=I-125&rft.pages=I-120-I-125&rft.issn=0194-911X&rft.eissn=1524-4563&rft.coden=HPRTDN&rft_id=info:doi/10.1161/01.hyp.23.1_suppl.i120&rft_dat=%3Cproquest_cross%3E76329163%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5217-6ce9b6a90626abcc5b721042bc75613a865bb8ecb58cdd30a12f7f4a84d3803f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=205267156&rft_id=info:pmid/8282344&rfr_iscdi=true |