Loading…

Purification and characterization of a high molecular weight phosphoprotein phosphatase from rabbit liver

A high molecular weight phosphoprotein phosphatase was purified from rabbit liver using high speed centrifugation, acid precipitation, ammonium sulfate fractionation, chromatography on DEAE-cellulose, Sepharose-histone, and Bio-Gel A-0.5m. The purified enzyme showed a single band on a nondenaturing...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1985-11, Vol.260 (26), p.14335-14343
Main Authors: Khandelwal, R L, Enno, T L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A high molecular weight phosphoprotein phosphatase was purified from rabbit liver using high speed centrifugation, acid precipitation, ammonium sulfate fractionation, chromatography on DEAE-cellulose, Sepharose-histone, and Bio-Gel A-0.5m. The purified enzyme showed a single band on a nondenaturing polyacrylamide anionic disc gel which was associated with the enzyme activity. The enzyme was made up of equimolar concentrations of two subunits whose molecular weights were 58,000 (range 58,000-62,000) and 35,000 (range 35,000-38,000). Two other polypeptides (Mr 76,000 and 27,000) were also closely associated with our enzyme preparation, but their roles, if any, in phosphatase activity are not known. The optimum pH for the reaction was 7.5-8.0. Km value of phosphoprotein phosphatase for phosphorylase a was 0.10-0.12 mg/ml. Freezing and thawing of the enzyme in the presence of 0.2 M beta-mercaptoethanol caused an activation (100-140%) of phosphatase activity with a concomitant partial dissociation of the enzyme into a Mr 35,000 catalytic subunit. Divalent cations (Mg2+, Mn2+, and Co2+) and EDTA were inhibitory at concentrations higher than 1 mM. Spermine and spermidine were also found to be inhibitory at 1 mM concentrations. The enzyme was inhibited by nucleotides (ATP, ADP, AMP), PPi, Pi, and NaF; the degree of inhibition was different with each compound and was dependent on their concentrations employed in the assay. Among various types of histones examined, maximum activation of phosphoprotein phosphatase activity was observed with type III and type V histone (Sigma). Further studies with type III histone indicated that it increased both the Km for phosphorylase a and the Vmax of the dephosphorylation reaction. Purified liver phosphatase, in addition to the dephosphorylation of phosphorylase a, also catalyzed the dephosphorylation of 32P-labeled phosphorylase kinase, myosin light chain, myosin, histone III-S, and myelin basic protein. The effects of Mn2+, KCl, and histone III-S on phosphatase activity were variable depending on the substrate used.
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(17)38722-7