Loading…
Calcium/calmodulin inhibition of basic-helix-loop-helix transcription factor domains
The ubiquitous Ca(2+)-binding protein calmodulin (CaM) is a key protein in Ca2+ homeostasis and activation of eukaryotic cells. CaM is the molecular link between free Ca2+ in the cell and the inhibition, or activation, of numerous enzymes. Many nuclear functions are under Ca2+/CaM control, and some...
Saved in:
Published in: | Nature (London) 1994-04, Vol.368 (6473), p.760-764 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The ubiquitous Ca(2+)-binding protein calmodulin (CaM) is a key protein in Ca2+ homeostasis and activation of eukaryotic cells. CaM is the molecular link between free Ca2+ in the cell and the inhibition, or activation, of numerous enzymes. Many nuclear functions are under Ca2+/CaM control, and some transcriptional activators are known to be Ca2+ modulated indirectly through Ca2+/CaM-dependent protein kinases. But Ca2+/CaM has not yet been found to directly modulate any transcription factor or other DNA-binding protein. Transcription factors of the basic-helix-loop-helix (bHLH) group are important regulators in numerous systems. Here we report that binding of Ca(2+)-loaded CaM to the bHLH domains of several bHLH proteins directly inhibits their DNA binding. Other bHLH proteins are either less sensitive or resistant. Ca2+ ionophore selectively inhibits transcriptional activation by Ca2+/CaM-sensitive bHLH proteins in vivo, implying that Ca2+ can directly influence transcription through differential CaM inhibition of bHLH domains. |
---|---|
ISSN: | 0028-0836 1476-4687 |
DOI: | 10.1038/368760a0 |