Loading…

The structure of the voltage-sensitive sodium channel: Inferences derived from computer-aided analysis of the Electrophorus electricus channel primary structure

A variety of computer-aided analyses was applied to the recently derived amino acid sequence of the Electrophorus electricus sodium channel protein in order to extract structural information such as hydrophobicity, periodicity, and secondary structure predictors. We propose a schematic model for the...

Full description

Saved in:
Bibliographic Details
Published in:FEBS letters 1985-12, Vol.193 (2), p.125-134
Main Authors: Greenblatt, R.E., Blatt, Y., Montai, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A variety of computer-aided analyses was applied to the recently derived amino acid sequence of the Electrophorus electricus sodium channel protein in order to extract structural information such as hydrophobicity, periodicity, and secondary structure predictors. We propose a schematic model for the arrangement and folding of the polypeptide chain within the bilayer. The model consists of 4 homologous regions, each containing 8 membrane-spanning (probably α-helical) structures. Several of these structures are amphipathic with a repeat of 3.5 residues, 4 of which (one from each homologous region) are postulated to form a negatively charged channel lining. Gating currents are proposed to arise from voltage-dependent separation of multiple ion pairs buried within the hydrophobic, intramembranous protein interior.
ISSN:0014-5793
1873-3468
DOI:10.1016/0014-5793(85)80136-8